
ptsecurity.com

Calypso APT
2019

Contents

Calypso APT	 2

Initial infection vector	 3

Lateral movement	 4

Attribution	 4

Analyzing Calypso RAT malicious code	 6

Dropper	 6

Installation BAT script	 7

Shellcode x86: stager	 9

Modules	 10

Commands	 11

Network code	 13

Shellcode x64: stager (base backdoor)	 13

Modules	 14

Commands	 15

Network code	 17

Other options	 19

Dropper-stager	 19

Hussar	 20

Initialization 	 20

Modules	 22

FlyingDutchman	 23

Conclusion	 26

Indicators of compromise	 26

Network	 26

File indicators	 26

Droppers and payload	 26

Droppers with the same payload	 27

Payload without dropper	 27

Hussar	 27

FlyingDutchman	 27

MITRE ATT&CK	 28

1

Calypso APT
The PT Expert Security Center first took note of Calypso in

March 2019 during threat hunting. Our specialists collected

multiple samples of malware used by the group. They have

also identified the organizations hit by the attackers, as well

as the attackers' C2 servers.

Our data indicates that the group has been active since at

least September 2016. The primary goal of the group is theft

of confidential data. Main targets are governmental institu-

tions in Brazil, India, Kazakhstan, Russia, Thailand, and Turkey.

Our data gives reason to believe that the APT group is of

Asian origin.1

1.	 See the section "Attribution."

2

Initial infection vector

The attackers accessed the internal network of a compromised organization by using an ASPX

web shell. They uploaded the web shell by exploiting a vulnerability or, alternately, guessing

default credentials for remote access. We managed to obtain live traffic between the attackers

and the web shell.

Figure 1. Part of the recorded traffic

The traffic indicates the attackers connected from IP address 46.166.129.241. That host contains

domain tv.teldcomtv.com, the C2 server for the group's trojan. Therefore the hackers use C2

servers not only to control malware, but also to access hosts on compromised infrastructures.

The attackers used the web shell to upload utilities1 and malware,2 execute commands, and dis-

tribute malware inside the network. Examples of commands from the traffic are demonstrated in

the following screenshot.

1.	 See the section "Lateral movement."

2.	 See the section "Analyzing Calypso RAT malicious code."

Figure 2. Commands sent to the web shell

3

Lateral movement

The group performed lateral movement by using the following publicly available utilities and

exploits:

�� SysInternals

�� Nbtscan

�� Mimikatz

�� ZXPortMap

�� TCP Port Scanner

�� Netcat

�� QuarksPwDump

�� WmiExec

�� EarthWorm

�� OS_Check_445

�� DoublePulsar

�� EternalBlue

�� EternalRomance

On compromised computers, the group stored malware and utilities in either C:\RECYCLER or

C:\ProgramData. The first option was used only on computers with Windows XP or Windows

Server 2003 with NTFS on drive C.

The attackers spread within the network either by exploiting vulnerability MS17-010 or by using

stolen credentials. In one instance, 13 days after the attackers got inside the network, they used

DCSync and Mimikatz to obtain the Kerberos ticket of the domain administrator, "passing the

ticket" to infect more computers.

Figure 3. Obtaining account data via DCSync

Use of such utilities is common for many APT groups. Most of those utilities are legitimate ones

used by network administrators. This allows the attackers to stay undetected longer.

Attribution

In one attack, the group used Calypso RAT, PlugX, and the Byeby trojan. Calypso RAT is malware

unique to the group and will be analyzed in detail in the text that follows.

PlugX has traditionally been used by many APT groups of Asian origin. Use of PlugX in itself does

not point to any particular group, but is overall consistent with an Asian origin.

The Byeby trojan1 was used in the SongXY malware campaign back in 2017. The version used now

is modified from the original. The group involved in the original campaign is also of Asian origin.

It performed targeted attacks on defense and government-related targets in Russia and the CIS

countries. However, we did not find any clear-cut connection between the two campaigns.

When we analyzed the traffic between the attackers' server and the web shell, we found that the

attackers used a non-anonymous proxy server. The X-Forwarded-For header passed the attackers'

IP address (36.44.74.47). This address would seem to be genuine (more precisely, the first address

in a chain of proxy servers).

1.	 unit42.paloaltonetworks.com/unit42-threat-actors-target-government-belarus-using-cmstar-trojan/

4

https://unit42.paloaltonetworks.com/unit42-threat-actors-target-government-belarus-using-cmstar-trojan/

The IP address belongs to China Telecom. We believe the attackers could have been careless and

set up the proxy server incorrectly, thus disclosing their real IP address. This is the first piece of

evidence supporting the Asian origins of the group.

Figure 4. Headers of requests to the web shell

Figure 5. Information on the discovered IP address

Figure 6. IP address found in the DoublePulsar configuration

Figure 7. Information on the discovered IP address

The attackers also left behind a number of system artifacts, plus traces in utility configurations

and auxiliary scripts. These are also indicative of the group's origin.

For instance, one of the DoublePulsar configuration files contained external IP address

103.224.82.47, presumably for testing. But all other configuration files contained internal

addresses.

This IP address belongs to a Chinese provider, like the one before, and it was most likely left

there due to the attackers' carelessness. This constitutes additional evidence of the group's Asian

origins.

5

We also found BAT scripts that launched ZXPortMap and EarthWorm for port forwarding. Inside

we found network indicators www.sultris.com and 46.105.227.110.

Figure 8. Network indicators found in the BAT scripts

The domain in question was used for more than just tunneling: it also served as C2 server for the

PlugX malware we found on the compromised system. As already mentioned, PlugX is tradition-

ally used by groups of Asian origin, which constitutes yet more evidence.

Therefore we can say that the malware and network infrastructure used all point to the group

having an Asian origin.

Analyzing Calypso RAT malicious code

The structure of the malware and the process of installing it on the hosts of a compromised net-

work look as follows:

Figure 9. Malware structure and installation process

Dropper

The dropper extracts the payload as an installation BAT script and CAB archive, and saves it to

disk. The payload inside the dropper has a magic header that the dropper searches for. The fol-

lowing figure shows an example of the payload structure.

6

Figure 10. Structure of the payload hard-coded in the dropper

Figure 12. Example of installation script obfuscation

Figure 11. Dropper with original encryption and decryption algorithm

The dropper encrypts and decrypts data with a self-developed algorithm that uses CRC32 as

a pseudorandom number generator (PRNG). The algorithm performs arithmetic (addition and

subtraction) between the generated data and the data that needs to be encrypted or decrypted.

Now decrypted, the payload is saved to disk at %ALLUSERSPROFILE;\TMP_%d%d, where the

last two numbers are replaced by random numbers returned by the rand() function. Depending

on the configuration, the CAB archive contains one of three possibilities: a DLL and encrypted

shellcode, a DLL with encoded loader in the resources, or an EXE file. We were unable to detect

any instances of the last variant.

Installation BAT script

The BAT script is encoded by substitution from a preset dictionary of characters; this dictionary

is initialized in a variable in the installation script.

In the decoded script, we can see comments hinting at the main functions of the script:

�� REM Goto temp directory & extract file (go to TEMP directory and extract files there)

�� REM Uninstall old version (uninstall the old version)

�� REM Copy file (copy file)

�� REM Run pre-install script (run the installation BAT script)

�� REM Create service (create a service launching the malware at system startup)

�� REM Create Registry Run (create value in the registry branch for autostart)

7

At the beginning of each script we can see a set of variables. The script uses these variables to

save files, modify services, and modify registry keys.

Figure 13. Initializing variables in deobfuscated script

Figure 14. Early version of the script with comments

In one of the oldest samples, compiled in 2016, we found a script containing comments for how

to configure each variable.

8

Shellcode x86: stager

In most of the analyzed samples, the dropper was configured to execute shellcode. The dropper

saved the DLL and encrypted shellcode to disk. The shellcode name was always identical to that

of the DLL, but had the extension .dll.crt. The shellcode is encrypted with the same algorithm as

the payload in the dropper. The shellcode acts as a stager providing the interface for communi-

cating with C2 and for downloading modules. It can communicate with C2 via TCP and SSL. SSL

is implemented via the mbed_tls library.

Initial analysis of the shellcode revealed that, in addition to dynamically searching for API func-

tions, it runs one more operation that repeats the process of PE file address relocation. The

structure of the relocation table is also identical to that found in the PE file.

Figure 15. Shellcode relocations

Figure 16. Debugging information inside the shellcode

Figure 17. Example of shellcode configuration

Since the process of shellcode address relocation repeats that of the PE file, we can assume

that initially the malware is compiled into a PE file, and then the builder turns it into shellcode.

Debugging information found inside the shellcode supports that assumption.

API functions are searched for dynamically and addresses are relocated, after which the config-

uration hard-coded inside the shellcode is parsed. The configuration contains information about

the C2 server address, protocol used, and connection type.

Next the shellcode creates a connection to C2. A random packet header is created and sent to C2.

In response the malware receives a network key, saves it, and then uses it every time when com-

municating with C2. Then the information about the infected computer is collected and sent to C2.

Next three threads are launched. One is a heartbeat sending an empty packet to C2 every 54

seconds. The other processes and executes commands from C2. As for the third thread, we could

not figure out its purpose, because the lines implementing its functionality were removed from the

code. All we can tell is that this thread was supposed to "wake up" every 54 seconds, just like the

first one.

9

Modules

We have not found any modules so far. But we can understand their functionality by analyzing

the code responsible for communication between the shellcode and the modules. Each module

is shellcode which is given control over the zero offset of the address. Each module exists in its

own separate container. The container is a process with loaded module inside. By default, the

process is svchost.exe. When a container is created, it is injected with a small shellcode that caus-

es endless sleep. This is also hard-coded in the main shellcode, and more specifically in JustWait.

pdb, most likely.

The module is placed inside with an ordinary writeprocess and is launched either with

NtCreateThreadEx or, on pre-Vista operating systems, CreateRemoteThread.

Two pipes are created for each module. One is for transmitting the data from the module to C2;

the other for receiving data from C2. Quite likely the modules do not have their own network

code and instead use the pipes to communicate with external C2 through the main shellcode.

Figure 18. Creating pipes for modules

Each module has a unique ID assigned by C2. Containers are launched in different ways. A con-

tainer can be launched in a specific session open in the OS or in the same session as the stager.

In any particular session, the container is launched by getting the handle for the session token of

a logged-in user, and then launching the process as that user.

10

Figure 19. Creating container process in a different session

Commands

The malware we studied can process 12 commands. All of them involve modules in one way or

another. Here is a list of all IDs of commands found in the malware, along with those that the mal-

ware itself sends in various situations.

ID Direction Type Description

0x401 From С2 Command

Create module descriptor. This command contains

information on the module size and ID. It also allo-

cates memory for the module data. The command

is likely the first in the chain of commands used for

loading a module

0x402 From С2 Command

Accept module data, and if all data is accepted,

launch the module inside a container running in the

same session as the stager

0x403 From С2 Command
Same as 0x402, but the module is launched in a

container running in a different session

0x404 From C2 Command
Write data to pipe for module launched inside a con-

tainer running in the same session as the stager

0x405 From С2 Command
Write data to pipe for module launched inside a

container in a different session

0x409 From С2 Command

Generate a constant by calling GetTickCount() and

save it. This constant is used in the third thread,

mentioned already, whose purpose we were unable

to discern

0х201 From С2 Command

Launch the module if the buffer size stored in the

module descriptor equals the module size. Does not

accept data (unlike commands 0х402 and 0х403).

The module is launched inside a container running in

the same session as the stager

11

0х202 From С2 Command
Same as 0x201, but the module is launched in a con-

tainer running in a different session

0х203 From С2 Command

Close all pipes related to a specific module running

inside a container launched in the same session as

the stager

0х204 From С2 Command
Same as 0x203, but for a module running in a con-

tainer launched in a different session

0x206 From С2 Command

Collect information on sessions open in the system

(such as session IDs and computer names) and send

it to C2

0х207 From С2 Command
Assign session ID. This ID will be used to launch con-

tainers in this session

0x409
From the

malware
Response

ID used in empty heartbeat packets (the first thread

described earlier)

0x103
From the

malware
Response

ID of packet containing information on the infected

computer

0x302
From the

malware
Response

ID of packet sent after an accepted session ID is

saved (command 0x207)

0х304
From the

malware
Response

ID of packet sent after module is successfully placed

inside a container. This code is sent after the module

is launched in a different session

0х303
From the

malware
Response

Same as 0x304, but the module is launched in the

same session as the stager

0x406
From the

malware
Response

ID of packet containing data piped by module in a

container launched in the same session as the stager

0x407
From the

malware
Response

Similar to 0x406, but from a module launched in a

different session

0x308
From the

malware
Response

ID of packet sent if no handle of a logged-in user's

session token could be obtained

0x408
From the

malware
Response

ID of packet sent if session-related information

could not be obtained. Before the packet is sent, the

shellcode checks the OS version. If the version is

earlier than Vista, data is regarded as impossible to

obtain in the manner implemented in the malware,

because the Windows API functions it uses are pres-

ent only in Vista and later.

12

Network code

Network communication is initialized after the network key is received from C2. To do that, the

malware sends a random sequence of 12 bytes to C2. In response the malware also expects 12

bytes, the zero offset of which must contain the same value (_DWORD) as prior to sending. If the

check is successful, four bytes at offset 8 are taken from the response and decrypted with RC4.

The key is four bytes sent previously, also located at offset 8. This result is the network key. The

key is saved and then used to send data.

All transmitted packets have the following structure.

A random four-byte key is generated for each packet. It is later used to encrypt part of the header,

starting with the cmdld field. The same key is used to encrypt the packet payload. Encryption

uses the RC4 algorithm. The key itself is encrypted by XOR with the network key and saved to the

corresponding field of the packet header.

Shellcode x64: stager (base backdoor)

This shellcode is very similar to the previous one, but it deserves a separate description because

of differences in its network code and method of launching modules. This shellcode has basic

functions for file system interaction which are not available in the shellcode described earlier.

Also the configuration format, network code, and network addresses used as C2 by this shellcode

are similar to code from a 2018 blog post by NCC Group about a Gh0st RAT variant. However, we

did not find a connection to Gh0st RAT.

This variant of the shellcode has only one communication channel, via SSL. The shellcode imple-

ments it with two legitimate libraries, libeay32.dll and ssleay32.dll, hard-coded in the shellcode

itself.

First the shellcode performs a dynamic search for API functions and loads SSL libraries. The

libraries are not saved to disk; they are read from the shellcode and mapped into memory. Next

the malware searches the mapped image for the functions it needs to operate.

Then it parses the configuration string, which is also hard-coded in the shellcode. The configura-

tion includes information on addresses of C2 servers and schedule for malware operation.

1.	 nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/
decoding-network-data-from-a-gh0st-rat-variant/

struct Packet{

	 struct PacketHeader{

	 _ DWORD key;

	 _ WORD cmdId;

	 _ WORD szPacketPayload;

	 _ DWORD moduleId;

};

_ BYTE [max 0xF000] packetPayload;

};

Figure 20. Sample of configuration string

Days of the week

13

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/decoding-network-data-fr
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/decoding-network-data-fr

After that the malware starts its main operating cycle. It checks if the current time matches the

malware operational time. If not, the malware sleeps for about 7 minutes and checks again. This

happens until the current time is the operational time, and only then does the malware resume

operation. Figure 20 demonstrates an example in which the malware remains active at all times

on all days of the week.

When the operational time comes, the malware goes down the list of C2 servers specified in the

configuration and tries to connect. The malware subsequently interacts with whichever of the C2

servers it is able to successfully connect to first.

Then the malware sends the information on the infected computer (such as computer name,

current date, OS version, 32-bit vs. 64-bit OS and CPU, and IP addresses on network interfaces

and their MAC addresses). After the information on the infected computer is sent, the malware

expects a response from C2. If C2 returns the relevant code, sending is deemed successful and

the malware proceeds. If not, the malware goes back to sequentially checking C2 addresses. Next

it starts processing incoming commands from C2.

Modules

Each module is a valid MZPE file mapped in the address space of the same process as the shell-

code. Also the module can export the GetClassObject symbol, which receives control when run

(if required).

Each module has its own descriptor created by a command from C2. The C2 server sends a byte

array (0x15) describing the module. The array contains information on the module: whether the

module needs to be launched via export, module type (in other words, whether it needs pipes

for communicating with C2), module size, entry point RVA (used if there is no flag for launching

via export), and module data decryption key. The key is, by and large, the data used to format

the actual key.

Figure 21. Module decryption

We should also point out that decryption takes place only if modKey is not equal to the 7AC9h

constant hard-coded in the shellcode. This check affects only the decryption process. If modKey

does equal the constant, the malware will immediately start loading the module. This means the

module is not encrypted.

14

Each module is launched in a separate thread created specially for that purpose. Launching with

pipes looks as follows:

�� The malware creates a thread for the module, starts mapping the module, and gives it con-
trol inside the newly created thread.

�� The malware creates a new connection to the current working C2.

�� The malware creates a pipe with the name derived from the following format string: \\.\
pipe\windows@#%02XMon (%02X is replaced by a value that is received from С2 at the same
time as the command for launching the module).

�� The malware launches two threads passing data from the pipe to C2 and vice versa,
using the connection created during the previous step. Two more pipes, \\.\pipe\win-
dows@#%02Xfir and \\.\pipe\windows@#%02Xsec, are created inside the threads. The pipe
ending in "fir" is used to pass data from the module to C2. The pipe ending in "sec" is used
to pass data and commands from C2 to the modules.

The second thread processing the commands from C2 to the modules has its own handler. This

is described in more details in the Commands section. For now we can only say that one of the

commands can start a local asynchronous TCP server. That server will accept data from whoever

connects to it, send it to C2, and forward it back from C2. It binds to 127.0.0.1 at whichever port it

finds available, starting from 5000 and trying possible ports one by one.

Commands
The following is a list of IDs for commands the malware can receive, along with commands the

malware itself sends in various situations.

ID Direction Type Description

0x294C From С2 Command Create module descriptor

0x2AC8 From С2 Command Receive data containing the module, and save it

0x230E From С2 Command Launch module without creating additional pipes

0x2D06 From С2 Command Destroy module descriptor object

0x590A From С2 Command Launch built-in module for file system access

0x3099 From С2 Command Launch module and create additional pipes for

communication

0x1C1C From С2 Command
Self-removal: run a BAT script removing persistence

and clearing the created directories

0x55C3 From С2 Command Upload file from computer to C2

0x55C5 From С2 Command List directories recursively

15

0x55C7 From С2 Command Download file from C2 to computer

0x3167 From С2 Command Write data to pipe ending in "Mon"

0x38AF From С2 Command

Write command 0x38AF to pipe ending in "Mon".

After that, end the open connection for the module.

Possibly means "complete module operation"

0x3716 From С2 Command Send module data to a different module

0x3A0B From С2 Command Same as 0x3099

0x3CD0 From С2 Command
Start an asynchronous TCP server to shuttle data

between C2 and connected client

0x129E
From the

malware
Response ID of a packet containing information about the

computer

0x132A From С2 Response

ID of the packet sent by C2 in response to

information sent regarding the infected computer.

The malware treats receipt of this packet as

confirming successful receipt of such information

0x155B
From the

malware
Response

ID of the packet containing information regarding

the initialized module descriptors. The packet acts

as "GetCommand". Response to this packet contains

one of the supported commands

0x2873
From the

malware
Response

ID of the packet that is sent if a module descriptor

has been initialized successfully (0x294c)

0x2D06
From the

malware
Response

ID of the packet that is sent if an error has occurred

during module descriptor initialization (0x294c)

0x2873
From the

malware
Response

the packet that is sent after module data has been

received (0x2AC8). Contains the amount of bytes

already saved

0x2743
From the

malware
Response

ID of the packet that is sent after a module is

launched without pipes (0x230E)

16

0x2D06
From the

malware
Response

ID of the packet that is sent after a module

descriptor has been destroyed (0x2D06)

0x3F15
From the

malware
Response

ID of the packet that is sent after a module is

launched with pipes

0x32E0
From the

malware
Response

ID of the packet that is sent if there has been an

attempt to reinitialize the pipes already created for

a module

0x34A7
From the

malware
Response

ID of the packet containing the data sent from the

pipe to C2

0x9F37
From the

malware
Response

ID of the packet containing the data forwarded from

the TCP server to C2

Network code

Each packet has the following structure:

Struct Packet{

	 Struct Header{

	 _ DWORD rand _ k1;

_ DWORD rand _ k2;

_ DWORD rand _ k3;

_ DWORD szPaylaod;

_ DWORD protoConst;

_ DWORD packetId;

_ DWORD unk1;

_ DWORD packetKey;

};

_ BYTE [max 0x2000] packetPayload;

};

Each packet has a unique key calculated as szPayload + GetTickCount() % hardcodedConst. This

key is saved in the corresponding packetKey header field. It is used to generate another key for

encrypting the packet header with RC4 (encryption will not occur without the packetKey field).

RC4 key generation is demonstrated in the following figure.

17

Figure 22. Generating RC4 key for the header

Then yet another RC4 key is generated from the encrypted fields szPayload, packetId, proto-

Const, and rand_k3. This key is used to encrypt the packet payload.

Figure 23. Generating RC4 key for the packet payload

18

Next the shellcode forms the HTTP headers and the created packet is sent to C2. In addition,

each packet gets its own number, indicated in the URL. Modules may pass their ID, which is used

to look up the connection established during module launch. Module ID 0 is reserved for the main

connection of the stager.

Figure 24. Forming HTTP headers

Other options

As we noted, the dropper may be configured to launch not just shellcode, but executable files

too. We found the same dropper-stager but with different payloads: Hussar and FlyingDutchman.

Dropper-stager

The main tasks of this dropper are unpacking and mapping the payload, which is encoded and

stored in resources. The dropper also stores encoded configuration data and passes it as a

parameter to the payload.

Figure 25. Unpacking the payload

19

Hussar

In essence Hussar is similar to the shellcodes described earlier. It allows loading modules and

collecting basic information about the computer. It can also add itself to the list of authorized

applications in Windows Firewall.

Initialization

To start, the malware parses the configuration provided to it by the loader.

Figure 26. Configuration sample

Configuration structure is as follows:

Struct RawConfig{

	 _ DWORD protocolId;

	 _ BYTE c2Strings [0x100];

};

The protocolId field indicates the protocol to be used for communicating with C2. There are a

total of three possibilities:

�� If protocolId equals 1, a TCP-based protocol will be used.

�� If protocolId equals 2, the protocol will be HTTP-based.

�� If protocolId equals 3, it will be HTTPS-based.

The time stamp is calculated from the registry from the key SOFTWARE\Microsoft\Windows\

CurrentVersion\Telephony (Perf0 value). If reading the time stamp is impossible, "temp" is added

to the computer identifier.

Figure 27. Generating computer ID

20

Next Hussar creates a window it will use for processing incoming messages.

Figure 28. Creating dispatcher window

Then the malware adds itself to the list of authorized applications in Windows Firewall, using the

INetFwMgr COM interface.

To complete initialization, Hussar creates a thread which connects to C2 and periodically polls

for commands. The function running in the thread uses the WSAAsyncSelect API to notify the

window that actions can be performed with the created connection (socket is "ready for reading,"

"connected," or "closed").

Figure 29. Communication between the open socket and the window

In general, for transmitting commands, the malware uses the window and Windows messaging

mechanism. The window handle is passed to the modules, and the dispatcher has branches not

used by the stager, so we can assume that the modules can use the window for communication

with C2.

21

Identifier Direction Type Description

0x835 From С2 Command

Collect information on the infected comput-

er (such as OS version, user name, computer

name, and string containing current time and

processor name based on registry data, plus

whether the OS is 64-bit)

0x9CA4 From С2 Command Load module. Module data comes from C2

0xC358

(Window MSG

Code)

??? Command Transmit data from LPARAM to C2

0xC359

(Window MSG

Code)

??? Command
Transmit C2 configuration to the module.

Module ID is transmitted to LPARAM

0x834,

0x835, 0x838,

0x9CA4, none

of these

??? Command
Transmit the received packet to the module.

Module ID is sent from C2

Modules

Each module is an MZPE file loaded into the same address space as the stager. The module must

export the GetModuleInfo function, which is called by the stager after image mapping.

22

FlyingDutchman

The payload provides remote access to the infected computer. It includes functions such as

screenshot capture, remote shell, and file system operations. It also allows managing system

processes and services. It consists of several modules.

Module ID CMD ID Direction Type Description

0xafc8 0xAFD3 From С2 Command Module ping

0xAFD4 From С2 Command

Sends information about the infected comput-

er (such as OS version and installed service

packs, processor name, string containing cur-

rent time and screen resolution, and informa-

tion about free and used disk space)

0xAFD5 From С2 Command Sends list of processes running on the system

0xAFD7 From С2 Command
End process. Process PID is transmitted from

C2

0xAFD9 From С2 Command
Sends list of current windows on the system,

along with their titles

0xAFDA From С2 Command
Send WM_CLOSE message to a specific

window

0xAFDB From С2 Command Maximize window

0xAFDC From С2 Command Minimize window

0xAFDD From С2 Command Show window

0xAFDE From С2 Command Hide window

23

0xAFE0 From С2 Command Sends list of current services on the system

0xAFE1 From С2 Command

Modifies the status of an existing service.

Service name is obtained from C2. It can

launch a service or change its status to STOP,

PAUSE, or CONTINUE. C2 indicates which

status to change to

0xAFE2 From С2 Command
Delete existing service. Service name is re-

ceived from C2

0xAFE3 From С2 Command
Change service start type. Service name is

received from C2

0xabe0 0xABEB From С2 Command Module ping

0xABEC From С2 Command

Launch the process for transmitting screen-

shots from the infected computer. Screenshots

are taken every second

0xABED From С2 Command Pause screenshot capture process

0xABF1 From С2 Command
Stop taking screenshots. The module stops

running

0xa7f8 0xA803 From С2 Command

Run cmd.exe plus a thread, which will read

console output data from the related pipe and

send it to C2

0xA804 From С2 Command
Write command to the pipe linked to STDIN of

the cmd.exe created previously

0xA805 From С2 Command
Stop the cmd.exe process and all associated

pipes. The module stops running

0xa410 0xA41B From С2 Command
Sends information about system disks and their

types

24

0xA41C From С2 Command
Sends directory listing. The relevant directory

path is obtained via C2

0xA41E From С2 Command Upload file from the computer to C2

0xA41F From С2 Command Run file

0xA420 From С2 Command Delete file

0xA421 From С2 Command Download file from C2

0xA424 From С2 Command Move file

0xA425 From С2 Command Create directory

0xA426 From С2 Command File Touch

0xA428 From С2 Command
Sends the size of a file to C2. File path is

passed via C2

25

Conclusion

The group has several successful hacks to its credit, but still makes mistakes allowing us to guess

its origins. All data given here suggests that the group originates from Asia and uses malware not

previously described by anyone. The Byeby trojan links the group to SongXY, encountered by us

previously, which was most active in 2017.

We keep monitoring the activities of Calypso closely and expect the group will attack again.

Indicators of compromise

Network

23.227.207.137

45.63.96.120

45.63.114.127

r01.etheraval.com

tc.streleases.com

tv.teldcomtv.com

krgod.qqm8.com

File indicators

Droppers and payload

C9C39045FA14E94618DD631044053824 Dropper

E24A62D9826869BC4817366800A8805C Dll

F0F5DA1A4490326AA0FC8B54C2D3912D Shellcode

CB914FC73C67B325F948DD1BF97F5733 Dropper

6347E42F49A86AFF2DEA7C8BF455A52A Dll

0171E3C76345FEE31B90C44570C75BAD Shellcode

17E05041730DCD0732E5B296DB16D757 Dropper

69322703B8EF9D490A20033684C28493 Dll

22953384F3D15625D36583C524F3480A Shellcode

1E765FED294A7AD082169819C95D2C85 Dropper

C84DF4B2CD0D3E7729210F15112DA7AC Dll

ACAAB4AA4E1EA7CE2F5D044F198F0095 Shellcode

26

Droppers with the same payload

85CE60B365EDF4BEEBBDD85CC971E84D dropper

1ED72C14C4AAB3B66E830E16EF90B37B dropper

CB914FC73C67B325F948DD1BF97F5733 dropper

43B7D48D4B2AFD7CF8D4BD0804D62E8B

617D588ECCD942F243FFA8CB13679D9C

5199EF9D086C97732D97EDDEF56591EC

06C1D7BF234CE99BB14639C194B3B318

Payload without dropper

E3E61F30F8A39CD7AA25149D0F8AF5EF Dll

974298EB7E2ADFA019CAE4D1A927AB07 Shellcode

AA1CF5791A60D56F7AE6DA9BB1E7F01E Dll

05F472A9D926F4C8A0A372E1A7193998 Shellcode

0D532484193B8B098D7EB14319CEFCD3 Dll

E1A578A069B1910A25C95E2D9450C710 Shellcode

2807236C2D905A0675878E530ED8B1F8 Dll

847B5A145330229CE149788F5E221805 Shellcode

D1A1166BEC950C75B65FDC7361DCDC63 Dll

CCE8C8EE42FEAED68E9623185C3F7FE4 Shellcode

Hussar

FlyingDutchman

27

MITRE ATT&CK

Tactic ID Name

Execution T1059 Command-Line Interface

Persistence T1060 Registry Run Keys / Startup Folder

T1053 Scheduled Task

T1158 Hidden Files and Directories

Defense Evasion T1027 Obfuscated Files or Information

T1085 Rundll32

T1064 Scripting

Credential Access T1003 Credential Dumping

Discovery T1087 Account Discovery

T1046 Network Service Scanning

T1135 Network Share Discovery

T1082 System Information Discovery

Lateral Movement T1097 Pass the Ticket

Collection T1114 Email Collection

T1113 Screen Capture

T1005 Data from Local System

Command And Control T1043 Commonly Used Port

T1024 Custom Cryptographic Protocol

T1001 Data Obfuscation

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance manage-
ment, incident and threat analysis, and application protection. Commitment to clients and research has earned Positive Tech-
nologies a reputation as one of the foremost authorities on Industrial Control System, Banking, Telecom, Web Application, and
ERP security, supported by recognition from the analyst community. Learn more about Positive Technologies at ptsecurity.com.

About
Positive Technologies

© 2019 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trade-
marks of Positive Technologies. All other trademarks mentioned herein are the property of their respective owners.

ptsecurity.com
info@ptsecurity.com

Calypso APT_A4.ENG.0002.02

https://www.ptsecurity.com/ww-en/
mailto:info%40ptsecurity.com?subject=

	Calypso APT
	Initial infection vector
	Lateral movement
	Attribution
	Analyzing Calypso RAT malicious code
	Dropper
	Installation BAT script
	Shellcode x86: stager
	Modules
	Commands
	Network code
	Shellcode x64: stager (base backdoor)
	Modules
	Commands
	Network code
	Other options
	Dropper-stager
	Hussar
	Initialization
	Modules
	FlyingDutchman
	Conclusion
	Indicators of compromise
	Network
	File indicators
	Droppers and payload
	Droppers with the same payload
	Payload without dropper
	Hussar
	FlyingDutchman
	MITRE ATT&CK

