

© 2013 Bitdefender

2

A Closer Look at MiniDuke

A Closer Look at
MiniDuke

Authors
Marius TIVADAR – Team Leader, Malware Research
Bíró BALÁZS – Malware Researcher
Cristian ISTRATE – Malware Researcher

General information:
Discovery date: February 27 2013.
Date of the first known sample: June 2011.
Risk: Document exfiltration.

© 2013 Bitdefender

3

A Closer Look at MiniDuke

Table of Contents

Table of Contents .. 3

1. Overview .. 5

2. The Infection Vector ... 6

3. Samples ... 6

4. Packer Intelligence .. 6

5. Modus Operandi ... 7

5.1 Notations .. 7

5.2 First installation .. 7

5.3 Post-Install Execution ... 7

5.4 The Watermark ... 8

5.4.1 Data layout (for samples dated 2011) .. 9

5.4.2 Data layout (samples in 2012/2013) ... 10

5.5 Removing the Watermark .. 10

5.5.1 Removal of the watermark through cryptanalysis ... 11

5.6 Decrypting the Twitter and Google usernames ... 11

5.7 Extraction of the secondary Twitter username ... 12

The Algorithm ... 12

5.8 Interaction with Twitter ... 12

5.8.1 Decoding the Tweets .. 13

5.9 Backup mechanism: Google ... 13

6. Command and Control ... 14

6.1 The Tweets ... 15

6.2 The Communication Protocol ... 16

6.4 The Encryption Algorithm for .GIF Files ... 17

6.5 Missing information .. 17

7. Malware Versions ... 18

8. Anti-Reverse Techniques ... 19

9. Payload: Backdoor ... 20

9.1 Samples .. 20

9.2 The Loader ... 20

9.3 Backdoor commands .. 20

© 2013 Bitdefender

4

A Closer Look at MiniDuke

9.4 Servers ... 21

10. Payload: Turkish Backdoor .. 22

10.1 Sample ... 22

10.2 Modus Operandi .. 22

Appendix A: Process Blacklist ... 24

Appendix B: Possible channels used for C&C ... 24

Appendix C: Possible MD5 hashes for payloads .. 25

Appendix D: E-Mail samples used in attacks ... 26

Appendix E: Twitter accounts ... 27

Appendix F: Forged documents .. 29

Appendix G: Samples by Year ... 34

Table of Figures

Figure 1: Infection mechanism .. 5

Figure 2: The watermarking process .. 9

Figure 3: The e-mail bundled with the infected PDF file ... 26

© 2013 Bitdefender

5

A Closer Look at MiniDuke

1. Overview

This piece of malware is made of three components: pdf, main, payload. The PDF file embeds
exploit code and a dropper that writes the “main” DLL component on the drive. Additionally,
the original PDF also contains a clean PDF file used in the social engineering stage.

Figure 1: Infection mechanism

As the malicious PDF file is opened, the Adobe process gets exploited, which results in
running the dropper. In turn, upon the dropper’s execution, the host process is killed and the
clean PDF file gets displayed. This trick allows the malware to run inconspicuously, without
the user noticing that something has happened in the background. The main DLL file is also
loaded and runs in installation mode (see the First Installation section ↓).

Once installed, the malware calls back home using a URL found via Twitter or Google search
query. When successfully connected, new updates or payloads are installed under the disguise
of .gif images.

There may be other infection mechanisms other than PDF files, but they remain unknown at
the moment.

© 2013 Bitdefender

6

A Closer Look at MiniDuke

2. The Infection Vector

Until now, we have only found spreading mechanisms that use social engineering via
malicious PDF files sent over e-mail (see Appendix F: Forged documents↓). The (Appendix D:
E-Mail samples used in attacks↓) section shows such a sample isolated from a real-life attack.

The following exploits have been used to trigger the infection:

2012
CVE-2011-2462

2013
CVE-2013-0640

The infection vector for the samples dated 2011 is unknown.

3. Samples

The list of known samples is available in the Samples by Year Appendix ↓.

4. Packer Intelligence

The file contains four or five sections with standard names such as: .text, .data, .reloc, .edata,
.rdata. The packer code is relatively small (< 1024 bytes). It is encrypted and located in the
.text section. The packer is used to decrypt the main code located in the largest section -
usually .data or .rdata. The DLL file only exports one function with a random name.

Decryption

Code = <buffer of the encrypted code>
length = len(Code)
i = length
for b in Code:
 v = ROL(b, i) length;
 <store decrypted value (v)>
 i = i - 1;

© 2013 Bitdefender

7

A Closer Look at MiniDuke

5. Modus Operandi

5.1 Notations

SHA1 : SHA1 (probably modified)
area1 : a 16-byte zone in the malicious file which holds the query string for Google.
area2 : a 128-byte zone in the malicious file which holds the encrypted Twitter link.

5.2 First installation

This is the case when the malware is started by the dropper. The malware awaits for the user
to interact with the computer and verifies the input from mouse or keyboard in an endless
loop. In the first step, the watermark is applied, as described in the Watermark ↓ section.

After the watermark is applied, the malware re-computes the file’s checksum by using the
CheckSumMappedFile() function.

The file is dropped with a name randomly chosen from a list in the %ALLUSERSPROFILE%\
Application Data folder set to automatically start after reboot as described below:

 for samples in 2011/2012: the malware modifies the Shell key in
Software\Microsoft\Windows NT\CurrentVersion\Winlogon. The key holds an
environment variable which is set to “rundll32.exe <path_to_dll>, <export_name>”.

 for samples collected in 2013: the malware adds a .lnk file to the Startup directory,

which would execute the dll using rundll32.exe.

If there is already a variant of the malware installed before the copy process, the new
malware deletes it and creates another combination of names, as well as a new environment
variable or .lnk file.

5.3 Post-Install Execution

In this stage, the malicious binary checks if the image is rundll32 - and therefore if it is run on
the system through the .lnk file set in the Startup folder or if it is run from the environment
variable. Then, a thread is created in which the OpenInputDesktop() function is called in an
endless loop with a sleep interval of 5 seconds. The malware then waits for user interaction
by checking input from the mouse or keyboard. The binary also checks the current date, but
only uses the current week of the month, the current month and year.

The sample from 2011 checks for the current date using http://tycho.usno.navy.mil/cgi-
bin/timer.pl
The sample from 2012 checks for the current date using http://www.time-
server.org/gettime.php?country=China

© 2013 Bitdefender

8

A Closer Look at MiniDuke

The samples compiled in 2013 get the current date from the operating system. The malware
then removes the watermark, decrypts the data section and attempts to access the Twitter
and Google accounts.

When either of the sites respond, it interprets the received data and decodes the tweets.
When the tweet is decoded, the malware connects to the command and control server in the
message and send information about the infected system.

The malware then awaits for a response from the command and control center, which comes
as an encrypted GIF file. Upon decryption, the malware extracts the embedded payload and
runs it. The payload is often an update.

After the task has completed, the malware stops. Its execution only lasts until it manages to
connect to a Twitter account, then it exits, in order to increase its chances of staying
undetected. However, it still runs for a little while upon every operating system boot.
The analysis we carried inside the lab reveals that the payloads are not persistent on disk. We
presume that they are downloaded from a specific location whenever the system boots up.

5.4 The Watermark

When the malware is ran via rundll32.exe upon the first boot, it creates a copy of itself named
as tempfile.dat (in some samples) and would mark the executable file in order to prevent it
from correctly running on other systems. This watermarking process involves the
modification of two already encrypted data areas at the end of the executable file.

The first encrypted area is 0x80 bytes large and holds the encrypted Twitter link.
For samples dated 2011, this area starts with encrypted(http://twitter.com/<username>)
For samples dated 2012-2013, the area starts with
encrypted(https://mobile.twitter.com/<username>)

© 2013 Bitdefender

9

A Closer Look at MiniDuke

Figure 2: The watermarking process

The switch to mobile.twitter has been done on purpose in order to keep the data traffic to a
minimum when a connection with Twitter is made. Also worth mentioning is the fact that the
variants we discovered as dated 2012/2013 are connecting via HTTPS.

The second area is 0x10 bytes long and holds an encrypted string that is used to perform a
Google query for samples from 2012/2013. Depending on the string and the current date, a
second Twitter handle is generated. The sample dated 2011 does not feature this Google
search mechanism.

The data areas don’t start at a specific offset. In order to find them, the malware iterates them
from their end and looks for the first byte that is not zero. This would be the last byte from the
small area (which is 0x10 bytes large). From here on, it can compute where the larger data
area is located in the file.

After the malware has identified the area offsets, it would start encrypting them. A hash is also
computed on specific pieces of system information and will be used in the encryption process.

5.4.1 Data layout (for samples dated 2011)

The malware enumerates every network interface, isolates the first DWORD in the description
and writes it to the buffer.

GetIfTable(interfaces);
for (i = 0; i < interfaces.count; i++)
{
 Buff[i] = *(DWORD*)interfaces[i].bDescription;
}

© 2013 Bitdefender

10

A Closer Look at MiniDuke

The result is overwritten to the previously collected data. This behavior is probably triggered
by a bug.

5.4.2 Data layout (samples in 2012/2013)

typedef struct COMPUTER_INFO
{
 DWORD dwSerialNumber; // found with a GetVolumeInformation call
 DWORD dwCPUID; // found with the CPUID instruction
 char ComputerName[MAX_COMPUTER_NAME_LENGTH + 1];
} COMPUTER_INFO, *PCOMPUTER_INFO;

The data is padded with zeros in order to achieve a block of 0x40 bytes. A SHA-1 hash is then
computed on these bytes, which is then used to modify the small data area (area1).

((DWORD) area1) ^= *((DWORD*) hash);
((DWORD) area1 + 4) ^= *((DWORD*) hash + 4);
((DWORD) area1 + 8) ^= *((DWORD*) hash + 8);
((DWORD) area1 + 0xC) ^= *((DWORD*) hash + 0xC);

For the large data area (which is 0x80 bytes long), the malware does not use the same hash
for encryption. Instead, it would interchange the first DWORD with the second one in the
structure and would re-compute the SHA-1 hash.

for (i=0;i<8;i++)
{
 ((DWORD) area2 + i) ^= *((DWORD*) hash);
 ((DWORD) area2 + i*4) ^= *((DWORD*) hash + 4);
 ((DWORD) area2 + i*8) ^= *((DWORD*) hash + 8);
 ((DWORD) area2 + i*0xC) ^= *((DWORD*) hash + 0x10);
}

After these operations have completed, a new checksum on the file is computed via the
CheckSumMappedFile() function.

5.5 Removing the Watermark

When the malware is run automatically (through rundll.exe), the watermark is removed. The
malware re-computes the hash based on the information collected from the system and would
perform a XOR operation with the keys computed on the data sections as described in the
Watermark ↑ section. When these operations have completed, the sample loaded in memory
would not feature the watermark and the data can be decrypted.

© 2013 Bitdefender

11

A Closer Look at MiniDuke

In order to deter analysis and avoid identification in automated malware research systems,
the malware iterates through processes and looks for potentially dangerous processes listed
in the Appendix A: Process Blacklist ↓ section. If it finds a blacklisted process, the malware
modifies the first DWORD in the structure to be hashed in order to ensure that the data
cannot be correctly decrypted.

5.5.1 Removal of the watermark through cryptanalysis

As we discussed in the previous paragraphs, we know that the full Twitter link used by this
specific sample is located in the second data section. Upon decryption, the buffer should start
with http(s)://(mobile|m)twitter.com which means that we could find out the encryption key
used for watermarking, as the encryption algorithm is a constant, just like the encrypted data.
We can find all the 16 bytes, since the plain-text is over 16 bytes long. As soon as we had the
key, we could completely decrypt the full link, including the Twitter username.

For the first data section - where the Google hyperlink is stored - cryptanalysis cannot be
performed as we don’t have a prefix of the encrypted text. More than that, the length of the
encrypted data is exactly the same as the length of the key.

5.6 Decrypting the Twitter and Google usernames

The process starts with removing the watermark, as described in the Removing the
Watermark ↑ section. At this point, we can isolate the data, although it is encrypted.

We proceed then with decrypting the 16-byte section that holds the Google username. The
decryption key is obtained by computing the CRC on the unpacked code.

The code starts at offset 0xC and spans until the beginning of the data section (which is 0x80
bytes long).

code_crc = crc32(code_begin, code_end);
for (i=3; i>=0; i--)
{
 ((DWORD)area1 + i*sizeof(DWORD)) ^= code_crc;
 code_crc = ROR(code_crc, 8);
}

Going further, the large area is decrypted with the following algorithm:

unsigned char c = 0;
for (i=0; i<0x40; i++)
{
 c = c - 1;

© 2013 Bitdefender

12

A Closer Look at MiniDuke

 area2[i] = (ROL(area2[i], c) - c) ^ c;
 if (area2[i] == '\0')
 {
 break;
 }
}

The result holds the Twitter link with the username.

5.7 Extraction of the secondary Twitter username

If the primary Twitter username can’t be accessed or if there is an error while contacting the
C&C server mentioned in the first tweet, the malware will attempt the same operation with
the secondary Twitter account. This secondary account is derived from the Google ID (which
is hardcoded into the sample) and the current date (current week). This means that a
different ID should come up every week.

The Algorithm

The malware gets the current date, but only keeps the week of the month, month and year.
These pieces of data are then concatenated with the decrypted data in the first data section. A
SHA-1 hash is computed on a buffer that has the following structure: Date|GoogleSearchTerm.

The hash is then converted to Base64 and isolates the first N bytes of the buffer, which are
determined by:

N = (*(DWORD*) base64_string % mod_val) + add_val;
// (mod_val, add_val) are
// (8, 6) for samples dated 2011
// (6, 7) for samples dated 2012/2013

Special characters are then stripped from the resulting string. Character ’+’ becomes ’a’, and
character ’/’ becomes ’9’.

5.8 Interaction with Twitter

The malware variant dated 2011 connects to twitter.com, while the variants isolated in
2012/2013 use mobile.twitter.com instead. Every sample comes hardcoded with a version
number in the form of a string. Every version uses a different Twitter username.

These are the Twitter accounts extracted from samples throughout the years:

© 2013 Bitdefender

13

A Closer Look at MiniDuke

2011
ObamaApril
Etoursinfo

2012
RuthHarper14
CurtinDiana
trulrich
zokath

2013
KellyPalmer20
EdithAlbert1
FontenotHoward
JennieCartagena
LorindaRay1
TinaPena10

The tweets are encoded in the following form:
uri!wp07VkkxYt3Ag/bdbNgi3smPJvX7+HLEw5H6/S0RsmHKtA== After decryption, the tweets
would become URLs to update servers.

5.8.1 Decoding the Tweets

The buffers are decoded using Base64, then rotates the output to the right (ROR) with a
variable number of bytes, and then 0x5A is subtracted. The encoding is fairly easy by
reversing the algorithm.

def ror(val,pos):
 return ((val >> pos) & 0xff) | ((val << (8-poz)) & 0xff)

crypt = base64.b64decode(din)
c = 0
dout = ""
for x in crypt:
 dout = dout + chr((ror(ord(x), c) - 0x5A) & 0xff)
 c = (c + 1) % 8
// “dout” holds the decoded string
// "din" is the initially-encrypted string.

5.9 Backup mechanism: Google

If there are connectivity issues while accessing Twitter or if no tweets holding a uri! command
are found, the malware falls back to an alternate backup mechanism. A search query with a

© 2013 Bitdefender

14

A Closer Look at MiniDuke

series of characters is sent to Google. The results are then processed until an “uri!” pattern is
found.

2011
zZkadfDljFE94fFa

2012
DFJ2dskl2394FDLI
9LidWIdf230DFkdL
zZkOERmcrD94fFLa
666wifjDfjalQWLK

2013
lUFujJFDiufLKWPR
HkyeiIDKiroLaKYr
HJUlredIREYUkLLa
lUFEfiHKDroLaKYr
HJUlOIDIREYUkLLa
lUFEfiHKljfLKWPR

Although it has been implemented, this mechanism has not been used in the wild. A Google
search for these sequences did not yield any results. Most likely, the mechanism has been
implemented either for possible victims who had access to Twitter blocked in the firewall or
as a failsafe mechanism, should the Twitter accounts get suspended.

Also worth mentioning is the fact that the publication of any technical papers about MiniDuke
with mentions to the uri! command and these unique sequences would also activate this
mechanism. If an infected system is unable to connect to Twitter anymore, it would still be
able to call back home, as the Google query would return the C&C address in these technical
papers.

6. Command and Control

Each Twitter username is associated with as many command and control centers as tweets.
The tweets are encoded as described in the Decoding the Tweets ↑ section.

After the C&C address is decoded, the malware concatenates it with index.php or main.htm,
default.htm, home.htm etc. See the Appendix B: Possible channels used for C&C section ↓.

2011

ObamaApril ↔ http://afgcall.com/demo/index.php
etoursinfo ↔ http://hottraveljobs.com/forum/docs/info.php

© 2013 Bitdefender

15

A Closer Look at MiniDuke

2012

RuthHarper14 ↔ http://arabooks.ch/events/
trulrich ↔ http://tsoftonline.com/conf/
zokath ↔ http://www.tsoftonline.com/engine/

2013

EdithAlbert11 ↔ http://tsoftonline.com/views/
FontenotHoward ↔ http://arabooks.ch/lib/
TinaPena10 ↔ http://arabooks.ch/srch/
LorindaRay1 ↔ http://artas.org/engine/

In the case of Twitter usernames JennieCartagena and CurtinDiana, there are no details about
the C&Cs, as these accounts had been suspended and no information was cached by Google.

6.1 The Tweets

The Twitter accounts and their corresponding messages are listed in the Appendix E: Twitter
accounts section↓, along with their timestamp - the date in which action was taken by the
attacking party.

The language of these tweets is particular for non-native English speakers - indefinite articles
are missing, but the definite ones are present. This is a feature particular to a small number of
relatively popular languages that are spoken in Indonesia or Middle East.

2011
ObamaApril
uri!wp07VkkxYt3Ag/bdbNgi3smPJvX7+HLEw5H6/S0RsmHKtA==

etoursinfo
uri!wp07VkkxYmHJnTtmuxrvY8ST8m6It3LjiYEnZvz4Yl/JezdMPBkw5IiVC1al.

2012
RuthHarper14
I was appointed to a new job, my ID for CV was wrong
uri!wp07VkkxYt3Md/JOnLhzRL2FJv0N9zJnzRNp

trulrich
uri!wp07VkkxYmfNkwN2nBmx4ch/Iu2c+GLeyZEDTKU=

© 2013 Bitdefender

16

A Closer Look at MiniDuke

zokath
uri!wp07VkkxYujRoyJ23DkwZ8mRGx6M9yLeyY8m/Yw48GS/E2k=

2013
EdithAlbert11
Albert, my cousin. He is working hard.
uri!wp07VkkxYmfNkwN2nBmx4ch/Iu2c+GJow39HbphL

FontenotHoward
My native town was ruined by tornado. uri!wp07VkkxYt3Md/JOnLhzRL2FJjY8l2It

TinaPena10
alas I met new boy uri!wp07VkkxYt3Md/JOnLhzRL2FJm7Mt7DEWg==

LorindaRay1
The weather is good today. Sunny! uri!wp07VkkxYt3Mne5uiDkz4Il/Iw48Ge/EWg==

6.2 The Communication Protocol

The malware performs a GET request to a server with a Base64-encoded string that, if
decoded, reads the following:

For 2011 samples:
crc32
country_code
ComputerName/%USERDOMAIN%
OS major, minor, sp_major, prod_type, architecture(32/64bit)
antivirus_list
proxy_list
version (the version of the malicious sample)
All values are split with ”|”. The entire string is encoded in Base64.

For 2012/2013 samples:
These samples send additional data, such as the system username. Another significant change
is the fact that the malware encodes the text using XOR and a key that results from SHA-1
hashing of the Google identifier. The resulting buffer is then encoded with Base64.

This is a practical example of the GET request:

?a=MjIzMTQyMzkzM3xST3xIT01FL0hPTUV8NXwxfDN8MXwwfC18LXwyLjEy&g=MjIzMTQy
M.

The variables names in the GET requests are randomly-picked. The second variable holds a
CRC modulo 13D455h on the encoded string. The server responds with a GIF file that holds
either a DLL or an EXE file.

© 2013 Bitdefender

17

A Closer Look at MiniDuke

6.3 Adding Modules and Updates

After a request is sent to the C2, the malware receives a file with a .GIF header. This is usually
a valid image that has appended to it a payload or an update in an encrypted form.

The malware checks for the ‘GIF8’ magic at the beginning of the file and looks for the 0x3b00
word. If the pattern is found, the malware isolates the next four bytes that actually represent
the decryption key, followed by the encrypted payload. Next, the digital signature is verified
and then the payload is decrypted. If it is a DLL file, it attempts to load it via LoadLibrary(); if it
is an EXE file, it gets written on disk with one of the following names: winupdt.exe,
wcsntfy.exe, netmngr.exe, dumpreport.exe, taskhosts.exe, wupdmngr.exe, winhlp.exe,
dllhosts.exe, dxdiagupd.exe, dialers.exe, netschd.exe, connwiz.exe, certupdt.exe,
repfault.exe, wuapreport.exe, lanmgr.exe. The file is then executed.

The GIF file is digitally signed with RSA 2048bit. The signature is located at the end of the GIF
file and uses SHA-1. This mechanism ensures that the updates are “legit” and prevents an
outsider from pushing a fake update.

6.4 The Encryption Algorithm for .GIF Files

The encryption algorithm for these GIF files is a simple XOR operation with a key that rotates
on each step

// the .gif file
buf = read_file(...)
// looking for the index where the pattern starts
i = idx_find_pattern()
// decrypting the data, the last 0x100 bytes don’t belong to the payload
for j in range(i,size - 0x100):
 decrypt = decrypt + chr(ord(buf[j]) ^ (key & 0xff))
 key = rold(key, 4)

6.5 Missing information

The C&C located at http://hottraveljobs.com/forum/docs/info.php holds a list that resembles
log files. There are approximately 60 entries which we believe are information about the
targets.

Since we know the form of the data sent over to Command and Control centers, we might be
able to get the format for the logs. The format is <CRC>|base64|<size>|<md5>. The CRC is a
decimal representation, while the <size> field can represent the size of a payload sent to the
respective target. The <md5> - value may be the MD5 hash of the payload.

© 2013 Bitdefender

18

A Closer Look at MiniDuke

Example

2547942184| 4mBwdmBzEaXtEGJSE10Z4mgVEuNV4mBXECt7gwtgf7EgGBbaHbAs7B7G7Bt0FnlFk17Z4hTuk1bZ4Ct
EiHEU9wEsIoFLgW7mjh3pjCNLfhEuIHzViHbRJwTrk1cS4G3Z4mFS4GAS4mAt4hTtE1PueGPVeF== |0|0

2419464363| EucSE6XtEGASE10Z4mFteGFWE14W4wt7gwt1GVzG7gTrgB4sFVxegv74d701k1IZ4hTtk1bZ4htbgV7
gcBz5f14UcBbSj2nWih3vJUAVdm3ZdhTUdmBUk1cVdmBTdmcT4GbZ4GBY4mcY4mN=
|150948|c026fbffeed6155bf186abedb8681257

If the two fields at the end are really representations for <size> and md5, then we may have
24 different binary files (see the Appendix C: Possible MD5 hashes for payloads section ↓). No
files in the list could be found by their corresponding MD5.

7. Malware Versions

Each sample of the malware comes with a version number hardcoded in the binary. Different
versions are usually linked to a different Twitter account. The vast number of versions
indicates intense activity, but only a limited number of samples are known. The timestamp is
isolated from the sample’s PE header and represents the moment in which the executable file
has been linked. Although it can be usually spoofed, we believe it is real, as we were able to
correlate it with the moment we received each of the samples.

2011
2011/06/20 - 0.1 - ObamaApril
2011/10/13 - 2.12 – etoursinfo

For the 2011 timeframe, we have two samples. The one linked with the ObamaApril Twitter
handle - malware version 0.1 - appears to be the oldest sample. The jump to version 2.12
cannot be justified, and we believe that there are a number of missing samples, which makes
year 2011 one of the most active periods for this family of malware. However, one could also
speculate that the versions do not follow a strict order.

2012
2012/05/14 - 6.66 - trulrich
2012/05/21 - 5.21 - trulrich
2012/05/23 - 6.67 - zokath
2012/06/06 - 6.06 - tonyafordy
2012/09/04 - 0.49 - CurtinDiana
2012/12/26 - 3.13 - RuthHarper14

For year 2012, there are a number of different versions, although we don’t know if they follow
a strict order or not. For instance, version 3.13 was released in December, while version 5.21
was spotted in May. It is possible that the servers hosting the samples to have run out of sync.
This would explain why lower versions have shown up in December.

© 2013 Bitdefender

19

A Closer Look at MiniDuke

2013

2013/02/12 - 1.05 - TinaPena10
2013/02/20 - 1.10 - LorindaRay1
2013/02/20 - 1.12 - EdithAlbert11
2013/02/20 - 1.13 - FontenotHoward
2013/02/21 - 1.10 - LorindaRay1
2013/02/21 - 1.12 - EdithAlbert11
2013/02/21 - 1.13 - FontenotHoward
2013/02/21 - 1.16 - JennieCartagena
2013/02/26 - 1.20 - KellyPalmer20

The versions released in 2013 follow a much stricter order. Every subversion of the malware
comes with a separate Twitter handle. Quick math shows that there are at least 20 Twitter
accounts that have been used in the attacks throughout 2013 (or at least until February 26th,
the date of the discovery).

8. Anti-Reverse Techniques

The first defense mechanism to prevent analysis is the presence of the watermark. The binary
file won’t properly run on a different machine, since the data inside the malware would be
decrypted improperly.

Other techniques to prevent data decryption are present inside the binary:

 Running software used for reverse engineering: OllyDbg, IDA, Process Monitor etc.
 Running the binary in virtual machines: VMWare and VirtualBox.
 Breakpoints added to the code or code alteration (hardware breakpoints need to be

used instead).

The malware also monitors for signs of user interaction, a common technique used for anti-
emulation and anti-automated malware analysis. Another important aspect for versions in
2012 and 2013 is the fact that the malware does not trigger right after installation, but rather
wait for a system restart to execute its main code.

© 2013 Bitdefender

20

A Closer Look at MiniDuke

9. Payload: Backdoor

9.1 Samples

These are the MD5 hashes for the droppers. The date is collected from the PE file header of
the backdoor in the droppers:

1e1b0d16a16cf5c7f3a7c053ce78f515, 2012-03-05
b029378966d2694f8abd51f0d6c7822a, 2012-06-15
53db085a276ebbf5798ba756cac833ea, 2013-02-22

9.2 The Loader

The loader decodes the information in the .data section with the UCL algorithm, then passes
control to the decrypted code. This piece of code holds a small loader stub, followed by an
executable file which is the backdoor itself. The stub overwrites the memory image of the
original executable file with the backdoor so it is never written on disk.

The malware also creates the following key in the Registry
HKCU\Software\Microsoft\ApplicationManager with a value of AppID = <random> (the value is
generated via the GetTickCount() function). Malware then waits in a loop and performs
requests to info.leveldelta.com

Example: GET /php/text.php?i=gigogrzf4J74xQdeBqVi6w360xlP2ksrNpY7dxmj Accept:
/ User-Agent: Mozilla/4.0 Host: info.leveldelta.com

The base64 value in the request is a 30-byte buffer derived from AppID and GetTickCount()
and is always different. We believe that it is used as an identifier. If it gets a response from the
server, the malware performs a series of validations and execute the received commands.

The responses are sent via POST and contain the identifier from the GET request, followed by
the command’s result. This is the way the malware exfiltrates documents from the target
computers.

9.3 Backdoor commands

mv - Moves a file. Uses MoveFileA api.
cp - Copies a file. Uses CopyFileA api.
rm - Deletes a file. Uses DeleteFileA api.
pwd - Gets current dir. Uses GetCurrentDirectoryA api.
cd - Sets current dir. Uses SetCurrentDirectoryA api.
rmdir - Removes dir. Uses RemoveDirectoryA api.
mkdir - Creates a dir. Uses CreateDirectoryA api.
pskill - Kills process. Uses OpenProcess, TerminateProcess apis.

© 2013 Bitdefender

21

A Closer Look at MiniDuke

exew - Create a process. Uses CreateProcessA api.
conf - Gets some configuration data, creates a string "id: 0x%08X\char`
host: info.leveldelta.com\
port: %d\
delay: %d\”
cdt - Change to TEMP dir. Uses GetTempPathA, SetCurrentDirectoryA APIs.
dev - Returns the list of drives in the system with their type (fixed, removable, etc). The
following strings are used for their types: unk, nrt, rmv, fix, net, cdr, ram, und. Uses
GetLogicalDriveStringsA, GetDriveTypeA apis.
time - Gets the number of hours since the system was started: "uptime %5d.%02dh”. Uses
GetTickCount api.
info - Gets info about system. String generated like: "%d %s\n%s\
%s\" using GetCurrentProcessId, GetModuleFileNameA, GetComputerNameA, GetUserNameA
apis.
exit - "exiting..."
dir, ls - List files in current dir. Uses FindFirstFile("*"), FindNextFile apis.
exeu - CreateProcessWithLogonW and reads data from pipe.
ecec - CreateProcessA and read data from pipe.
put - Writes file on disk from internal buffer. Uses CreateFileA, WriteFile apis.
get - Reads a file in chunks of 0x400 bytes and computes SHA1 on them.
ps, pslist - Gets info about processes and their modules. Uses EnumProcesses, OpenProcess,
EnumProcessModules, GetModuleFileNameExA apis.

9.4 Servers

We have identified two servers used in the attack (sample md5/timestamp/server):
1e1b0d16a16cf5c7f3a7c053ce78f515, 2012-03-05 news.grouptumbler.com/news/feed.php
b029378966d2694f8abd51f0d6c7822a, 2012-06-15 info.leveldelta.com/php/text.php
53db085a276ebbf5798ba756cac833ea, 2013-02-22 info.leveldelta.com/php/text.php

Whois information on news.grouptumbler.com

Registrant Contact:

 Grouptumbler.COM

 Tim K. Lappin ()

 Fax:

 4573 Froe Street

 Bluefield, WV 24701

 Bluefield, WV 24701

 US
 4573 Froe Street

 Bluefield, WV 24701

 Bluefield, WV 24701

Whois information on info.leveldelta.com

Registrant Contact:

 Abdul Kasim ()

© 2013 Bitdefender

22

A Closer Look at MiniDuke

 Fax:

 1442 Sokak No 49

 Izmir, IZMIR 35432

 TR

 1442 Sokak No 49

 Izmir, IZMIR 35432

 TR

10. Payload: Turkish Backdoor

10.1 Sample

626489f8cafacb1b24fe6ecf0db52f23 - The received.gif file, named 3979106736.gif
6bc34809e44c40b61dd29e0a387ee682 - The variant decrypted from the .gif file

Observations: clean code, generated by the compiler and no obfuscation. The file does not
have version information or digital signature.

10.2 Modus Operandi

The malware checks to see if the host computer connects to the Internet through a proxy
server. If set, the malware uses the proxy settings. Regardless of the connection method, the
malware connects to 85.95.236.114:443 using sockets.

It creates an unique identifier (DWORD size), from the socket handle. Everything is encrypted
with XOR and a value of an address on the stack.

It sends the identifier on the opened socket.

It receives 16 bytes from the socket, and creates a MD5 hash on these. The MD5 hash will be
used as key for the AES algorithm.

It receives 16 bytes used for AES encryption as initialization vector.

It receives 4 bytes, it performs a XOR operation with the identifier and allocates memory as
follows: malloc(val XOR user_id)

It receives a number of size bytes, decrypts them with AES and calls the start of the decrypted
buffer.

The payload can be used to load new modules. The received code needs to be completely
relocatable as the main piece of malware. Using this technique, the attackers may introduce
malicious code that will never be saved on disk, but rather executed directly from memory.
We could also presume that some payloads have been exclusively delivered via this channel
and can’t be recovered for forensic investigation because they never made it on the disk drive.

© 2013 Bitdefender

23

A Closer Look at MiniDuke

Information about 85.95.236.114

Location: Turkey Izmir Inetmar Internet Hizmetleri San. Tic. Ltd. Sti

ASN: AS49467 INETMAR INETMAR Internet Hizmetleri Autonomous System

(izmir) (registered Jun 15, 2009)

Contact: person: Deniz Tosun org: ORG-IiHS1-RIPE address: 1370 sok.

NO:42 Yalay Is Merkezi Kat:4/406 address: Montro/Konak/IZMIR

Country: TR

© 2013 Bitdefender

24

A Closer Look at MiniDuke

Appendix A: Process Blacklist

apispy32.exe
apimonitor.exe
winapioverride32.exe
procexp.exe
procmon.exe
filemon.exe
regmon.exe
winspy.exe
wireshark.exe
dumpcap.exe
tcpdump.exe
tcpview.exe
windump.exe
netsniffer.exe
iris.exe
commview.exe
ollydbg.exe
syser.exe
idag.exe
idag64.exe
petools.exe
vboxtray.exe
vboxservice.exe
vmwaretray.exe
vmwareuser.exe

Appendix B: Possible channels used for C&C

index.htm
main.htm
default.htm
home.htm
out.htm
click.htm
link.htm
page.htm
browse.htm
directory_home.htm
portal.htm
info.htm
current.htm
details.htm

© 2013 Bitdefender

25

A Closer Look at MiniDuke

search.htm
article.htm

Appendix C: Possible MD5 hashes for payloads

01c59a7a5612f90cd8f52a30c1b0ec4e
09ac651a422e03eba9c169c218c4aac6
116d759a7cc530826e96be46803efa30
1679a28e3fc3cc9554fbb4f0fa8705f4
18132ea533919353a949d92df46d752b
4ea816a1b0e91b22c6d25cee4f4fde3c
67acf4072e451052d633dad9c8420eb4
719ea5175cf17b28c0ff0958179409cf
92a6385eeb0cefcabd557f29b169dec7
ac9f826f81c0dae043fa7045f7ec0ec8
b510b040e789d6d5f1ce4c5537970756
bb0318de92a47c2f2637f48217ab1be2
bd68fdba01b19e45a75beb14dfb7d76e
c026fbffeed6155bf186abedb8681257
c4a28bd80fda44e043b78db596e9602e
c660a74a189103bd0ceee8bdbd21571c
ded0c5cd0afa8419e85b2b79cefa806a
e1409964532d1a011de2198f0565cba1
e18d275072c0f1fc295f43e1d65c9936
e57db4833fc457f76d292fe798324902
f20ff2c43ea7a24252359007cb182444
f3d8f1aca7e18126e4651f1da84adacb
f894fabe444a0e5f8416e39eead49df2
fe389fba6fb5876aca797bcf0cf8fb98

© 2013 Bitdefender

26

A Closer Look at MiniDuke

Appendix D: E-Mail samples used in attacks

Figure 3: The e-mail bundled with the infected PDF file

© 2013 Bitdefender

27

A Closer Look at MiniDuke

Appendix E: Twitter accounts

© 2013 Bitdefender

28

A Closer Look at MiniDuke

© 2013 Bitdefender

29

A Closer Look at MiniDuke

Appendix F: Forged documents

© 2013 Bitdefender

30

A Closer Look at MiniDuke

© 2013 Bitdefender

31

A Closer Look at MiniDuke

© 2013 Bitdefender

32

A Closer Look at MiniDuke

© 2013 Bitdefender

33

A Closer Look at MiniDuke

© 2013 Bitdefender

34

A Closer Look at MiniDuke

Appendix G: Samples by Year

These are the MD5 checksums of the main components, but not payloads, droppers or PDF
files.

2011

1c658719e6dedb929a6d85359c59682d

975e0ebd25b52dad0dd75d7cf01baa4b

2012

1de51ec5d2b8466f0d424e1c8dcd6454

2e9e0b7c6b9fe90ab3249878a282f3d1

423bb8914078a587d08b54d16bbd527c

45865a33d868c28377f93467726ccd83

4c9facc41d9432d11940afeaefeb0ce3

561017f887865b8d13f85c5474cdcbb8

5cd1451579ef46c9a768df302d2c8955

612fba96383a5098c26fe1a222e1e755

73931351f883cff5dbdcc54cc4eb10a7

74593127f50abff5327b3f7038b456d2

753737a255c7567fc5c6175373904a84

8d3542af992b1de4cf1f587f61dddb50

9f13dc03904dbd45374acc2134477273

a8f8e87df1ac4453dc6aa65daca9b97d

ded2f80457aaefe1a80a9cefd1f4645d

e48fb57ce3d9c56ca3cf6c4aed8ad0ea

ff83dad77ac2b526849930f1860dfd3f

2013

016536ed5276115a4ed72261eae073cd

0348458ddab87f5296191f08b01f842d

0b346e73f0f1483ec129be14e665f174

0dc58bc19e00bd8fee96a989c145f9b1

0e132f3486ded4dd5f8072c56218a6a7

0efa05d6d817bcada9a82dbbcb4e7c88

0f79a1453489123ce610835732bc14d3

124cf2d29ace0f1b92d23840f7d15467

172c36b5d0e4359b3cc7e2a54da4333c

1d83e0481f0f352551f501cc9fd16de0

20b4a6c42f1abf7a73ed64beb495ea7a

20e28d848daabd4369041d911fd7a79b

243837bbfa122a8a472faa02596d15d1

2528957b58ffaba591057d2416fe2226

2530f54b87508e6f09a6bc5ab863b5db

319df3a37d6c1325272d3234c52f6024

33335319c246c3ae5844e3d1be93644d

3442005846b16a96c081af5362f8ffaa

3886a408c917b0cf377c3b99899da942

3d556b7236b8fbc3e52ae1719c31bf7e

2013 (continued)

3db113b082fdcad366ef70aaeb4c42a2

41501aa706de0e972fe043411da211fc

424808b168d3d5d7bba77757177e70df

4932b2c4a629d2783d0927a4b4a2c678

4aee487d0bf88cc12e277b0f275a90d5

4b07a3ba46928b361132d043ced489ad

4eeead5b15e3d93229c185db5abb951a

509c8e389f293e4beaa18d425cc89475

51541ea6f5706dbf7598630de87c2cad

525bb2d9db67c22cc60172893ce657ac

527537cc28705e01af8d8006ae8308a9

527de10f536a842a4265532c38b6dbdd

57446317cf90ed2ca7fa0280fadedc01

5a97e7548fe118a4f829234828bd4621

5c1b0c783cbaae684a9600813a1ae392

633d5a729b73f2555c2dc0a8164bbda0

6942f1dfd61d231df8acb7ed0f6310c4

6a6c631a6c2194b9805359cd64ae778d

71ed4557ce864149e9e2863cd8e9b7af

7223245f43dfd77b2b600603f712804d

76642f61d20345ef04a52cff47e87795

810de1b9fa0a9396acae23dcd113a60d

81460a40d27b9d9671dcecb3ddcbdb8f

898315f60b4afd952fb40e8b3a9cc915

8b423c8b0522e09ffab2df7e38eea15f

8bf5f1ce970d23d3bb27b3a569023561

9d4923a284db404fcfe6deb664e6cb32

9da1c9280caeecb0e14e89fd51b4c995

a2dd811a8535db4026eaefb6469bb8ff

a5bc1dfbf1623b3c236f6c429f249ff1

ac492dd093a404f89554ce55800e2685

af74866f044fd10dc761f509ff743cd7

b17426c0eedc296b0c752db11ec52c82

b876837b7482fd68503247fbf2277840

bcdaee523dd9df6e68088da412ed1a50

c6d810b921c7c4690ffbd3f71b837690

c72e74b914428f1a18ba2ef1c6a737e4

c786a4cdfe08dbe7c64972a14669c4d1

c91e5d73d2b6af9b53f4092b82f254cd

c96ccb992ad128841b1ccc5b41a70ab3

cf33c3e61f35f1c721bcefda8dfd2963

d2209cb468db8e225712908c7b170eb5

d87adb9dbffc9af9995d24576b6b0cb3

d89eadb030bfda71d4784a9c5407dcc1

dca37dff4cb484d2dc1716b39ab58340

© 2013 Bitdefender

35

A Closer Look at MiniDuke

dd171802c25fae5b75fdcbafb353fc3f

de3e248a564b661fadc9752b2aadffc4

e1cd68f4775e46ecad342c2fef4222db

e29d75363204595ac729ba63a046e70b

e863737773f64498091cd775c7abde66

ea68bf40c2ba2fa3368287ca661bae7e

eded5be7e464bdbd05b18bfa10bea1fc

efa40e62ee5bcecaa2f42854bdc70e94

f1551fb70613cf4820acbb1eef470284

fedbe9853064a5affe17e98066376bde

