
MMD-0064-2019 - Linux/AirDropBot
blog.malwaremustdie.org (https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-
linuxairdropbot.html) · by unixfreaxjp · September 28, 2019

Prologue

There are a lot of botnet aiming multiple architecture of Linux basis internet of

thing, and this story is just one of them, but I haven't seen the one was coded like

this before.

Like the most of other posts of our analysis reports in MalwareMustDie blog, this

post has been started from a friend's request to take a look at a certain Linux

executable malicious binary that was having a low (or no) detection, and at that

time the binary hasn't been categorized into a correct threat ID.

This time I decided to write the report along with my style on how to reverse

engineering this sample, which is compiled in the MIPS processor architecture.

So I was sent with this MIPS 32bit binary ..

1

2

cloudbot-mips: ELF 32-bit MSB executable, MIPS, MIPS-I

version 1 (SYSV), statically linked, stripped

..and according to its detection report in the Virus Total hash it is supposed to be

a "Mirai-like" or Mirai variant malware, (thank's to good people for uploading

the sample to VirusTotal). But the fact after my analysis is saying differently,

these are not Mirai, Remaiten, GafGyt (Qbot/Torlus base), Hajime,

Luabots, nor China series DDoS binaries or Kaiten (or STD like). It is a

newly coded Linux malware picking up several idea and codes from other known

malware, including Mirai.

(https://lh3.googleusercontent.com/dxOB7ZuVg-fBrRmstt3EmVsaleV_-

https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html
https://lh3.googleusercontent.com/dxOB7ZuVg-fBrRmstt3EmVsaleV_-P9L6HxsIHK5w3puttv_w8pBzUM3sao1qFynjKVehsyIqcuW3dtU-sfUmA3l6TXGot255o7mfQ_tKl2KDS3XZ6s9_8vTKbVwK81VjsnENa4y32U=w1271-h810-no

P9L6HxsIHK5w3puttv_w8pBzUM3sao1qFynjKVehsyIqcuW3dtU-

sfUmA3l6TXGot255o7mfQ_tKl2KDS3XZ6s9_8vTKbVwK81VjsnENa4y32U=

w1271-h810-no)

This sample is just one of a series of badness, my honeypots, OSINT and a given

information was leading me into 26 types of samples that are meant to pwned

series of internet of thing (IoT) devices running on Linux OS, and this MIPS-

32 ELF binary one I received is just one of the flocks.

If you see the filenames you can guess some of those binaries are meant to aim

specific IoT/router platforms and not only for several randomly cross-compiled

architecture supported result. This type of binaries seem to be started appearing

in the early August, 2019, in the internet.

(https://lh3.googleusercontent.com/PfOoszwvHvBL5XA_RTTU5Oz05uXCLrS

quVuOdYCymdu9hBRhBKhd9SdN5odUu4MuHsBYGduBkkIwEi0QJGSdS3oY

NIdzXt50jH3M_0CsuPpgFUiFJEjHV__xTxgODZYx1KOtD0BmAxU=w1457-

h627-no)

Below is the additional list of the compiled binaries meant to run on several non-

Intel CPU running Linux operating systems, they can affect network devices like

routers, bridges, switches, and other the small internet of things that we may

already use on daily basis:

1

2

3

4

5

6

7

8

9

m68k-68xxx.cloudbot: 32-bit MSB Motorola m68k, 68020, version 1 (SYSV), statically linked

https://lh3.googleusercontent.com/dxOB7ZuVg-fBrRmstt3EmVsaleV_-P9L6HxsIHK5w3puttv_w8pBzUM3sao1qFynjKVehsyIqcuW3dtU-sfUmA3l6TXGot255o7mfQ_tKl2KDS3XZ6s9_8vTKbVwK81VjsnENa4y32U=w1271-h810-no
https://lh3.googleusercontent.com/PfOoszwvHvBL5XA_RTTU5Oz05uXCLrSquVuOdYCymdu9hBRhBKhd9SdN5odUu4MuHsBYGduBkkIwEi0QJGSdS3oYNIdzXt50jH3M_0CsuPpgFUiFJEjHV__xTxgODZYx1KOtD0BmAxU=w1457-h627-no

hnios2.cloudbot: 32-bit LSB Altera Nios II, version 1 (SYSV), dynamically linked

hriscv64.cloudbot: 64-bit LSB UCB RISC-V, version 1 (SYSV), dynamically linked

microblazebe.cloudbot: 32-bit MSB Xilinx MicroBlaze 32-bit RISC, version 1 (SYSV), staticall

microblazeel.cloudbot: 32-bit LSB version 1 (SYSV), statically linked,

sh-sh4.cloudbot: 32-bit LSB Renesas SH, version 1 (SYSV), statically linked.

xtensa.cloudbot: 32-bit LSB Tensilica Xtensa, version 1 (SYSV), dynamically linked.

arcle-750d.cloudbot: 32-bit LSB ARC Cores Tangent-A5, version 1 (SYSV), statically linked.

arc.cloudbot: 32-bit LSB ARC Cores Tangent-A5, version 1 (SYSV), dynamically linked.

(The hashes are all recorded in the "Hashes" section of this post)

Binary Analysis

Since I was asked to look into the MIPS sample so I started with it. The binary

analysis is showing a symbol striping result, but we can still get some executable

section's information, compiler setting/trace that's showing how it should be

run, and some information regarding of the size for the section/program

headers, but it's all just too few isn't it? Still this analysis is good for getting

information we need for supporting dynamic analysis (if needed) afterward. I

personally love to solve malware stuff as statically as possible.

I don't think I will get much information on the early stage (binary analysis) with

this ELF binary, except what had already known, such as cross-compiling result,

not packed, and headers and entry0 are in place, so I'm good for conducting the

next analysis step.

https://lh3.googleusercontent.com/DM692yeh8Njgi7ejrD0q5oOtzMY7Fx54ouR4CDkdss7oB5ckPzvVVTxFTVorE6t0S8GER968haIF4sYFkpH2DmpWmM0NIIzyPxd8qjr9lvcXTGl9TVnjrfJ2Vpq2aswmKUiJFhGPxss=w994-h825-no

(https://lh3.googleusercontent.com/DM692yeh8Njgi7ejrD0q5oOtzMY7Fx54

ouR4CDkdss7oB5ckPzvVVTxFTVorE6t0S8GER968haIF4sYFkpH2DmpWm

M0NIIzyPxd8qjr9lvcXTGl9TVnjrfJ2Vpq2aswmKUiJFhGPxss=w994-h825-no)

For file attributes I extracted them using forensics tools included in Tsurugi

Linux commands, which are also not showing special result too, except of what

has been recorded from the infected box. So I was taking several checks further I

run some several ELF pattern signatures I know, with running it against my

collection of Yara rules and ClamAV signature to match it to previous threat

database that I have, and this is only to make me understand why several false-

positive results came up in other Anti Virus product's detection. The malware yet

is having several interesting strings but they are still too generic to be processed

to identify the threat without reading its assembly further.

So my "practical binary analysis" result for this MIPS binary is going to be it,

nothing much.

Some methods on MIPS-32 static analysis to dissect
this sample with radare2:)

So this is the fun part, the binary analysis with radare2 ;). no cutter GUI, no fancy

huds, just an old-schooler way with command line, visual mode and graph in a

r2shell.

I think there is really no such precise step by step "cookbook" on how to to use

radare2 during analyzing something, and basically radare2 is enriched in

design coded by several coders for any kind of users to use it freely with many

flavor and options or purpose in binary analysis, once you get into it you'll just

get use to use it since radare2 will eventually adapting to your methods, and

before you know it you are using it forever.

My line of work from day one is UNIX operating systems, I use radare2 since the

name is "radare" compiled from FreeBSD ports in between years of 2006 to

2007, and I mostly use command line basis on every radare shell on my

VT100x/VT200x terminal emulation variants I use afterwards, this is kind of

building my reversing forms with radare2 until now. The command line base.

https://lh3.googleusercontent.com/DM692yeh8Njgi7ejrD0q5oOtzMY7Fx54ouR4CDkdss7oB5ckPzvVVTxFTVorE6t0S8GER968haIF4sYFkpH2DmpWmM0NIIzyPxd8qjr9lvcXTGl9TVnjrfJ2Vpq2aswmKUiJFhGPxss=w994-h825-no

But first, let's make sure you are setting"mips" and "32" in radare2 environment

of assembly architecture (arc) and bits for this binary, then try to recognize the

"main function", which is in "0x4016a0" at the pattern/location that's different

than Intel basis assembly like shown in the picture below:

(https://lh3.googleusercontent.com/pNkh0t72o31A1-

wkYGTO4vQWfNCX9FZNKKTt0SgxLThVC901XhJv88t28eV6KLitU4KNNz

m92QHcRxZV_U30Xt1quUTBsVTzhvi6yXo5RHs-rS28vs6Bj-

Gd0gQ38BR7ORIYJ4sgUdk=w1488-h840-no)

It is a simple command for only showing how many Linux syscall is used, and

this will work after the radare2 parse and analyze the binary to the analysis

database.

(https://lh3.googleusercontent.com/JLgDDeKWFxaFFyi63YtgQYUIOKsGTYV

F_aMNul5WLcB0vWRREng4GOl5yW4wCzFcRf9s4DTTMzspa2O7RQ355fC

m4VtB1UIPElAzefU5OZRExuyZczQTYUk8_RGTCj0c1NT7K5Vi59w=w1056

-h766-no)

PS: If you know what you're doing, an simpler/easier way for the MIPS 32bit to

https://lh3.googleusercontent.com/pNkh0t72o31A1-wkYGTO4vQWfNCX9FZNKKTt0SgxLThVC901XhJv88t28eV6KLitU4KNNzm92QHcRxZV_U30Xt1quUTBsVTzhvi6yXo5RHs-rS28vs6Bj-Gd0gQ38BR7ORIYJ4sgUdk=w1488-h840-no
https://lh3.googleusercontent.com/JLgDDeKWFxaFFyi63YtgQYUIOKsGTYVF_aMNul5WLcB0vWRREng4GOl5yW4wCzFcRf9s4DTTMzspa2O7RQ355fCm4VtB1UIPElAzefU5OZRExuyZczQTYUk8_RGTCj0c1NT7K5Vi59w=w1056-h766-no

seek where the syscall codes placed is by grepping the assembly code with the

hex value of "0x0000000c" like below, the same result should come up:

(https://lh3.googleusercontent.com/7ZKEtke_Gul9Em8e5H890KtLqGx7ADB

jX8GallIeorrKETL1S_Am6z9vnicoQ4xPkx1AuUqWphnZOk8DsV10naB7LNkl

aHs00fgBvlbEM7L8YN4SuXPAJsU3l_-2-2z7cCJUbkfCM8c=w599-h864-no)

In my case on dealing with Linux or UNIX binaries, I have to know first what

syscalls are used (that kernel uses for making basic operations), "syscall" is used

to request a service from kernel. Any good or bad program are using those (if

they need to run on that OS), so syscalls have to be there. For me, the syscalls is

important and its amount will tell you how big the work load will be, ..then the

rest is up to you and radare2 to extract them, the more of those syscalls, the

merrier our RE life will be, without knowing these syscalls there's no way we can

solve such stripped binary :)

In a Linux MIPS architecture, where assembly and register (reduced registers

due to small space) is different than PC's Intel ones (MISP is RISC, Intel is CISC,

RISC is for a CPU that is designed based on simple orders to act fast, many

networking devices are on RISC for this reason). Linux OS in some MIPS

platform can be configured to run either in big or in little endian mode too, you

have to be careful about the endianness in reversing MIPS, like this MIPS binary

is using big endian, also binaries for SGI machines, but some machines like

Loongson 3 are just like Intel or PPC works in little endian, several Linux OS is

differing their package for supporting each endianness with "mips" (big) or

"mipsel" (little) in their MIPS port. Information on the target machines for each

sample can help to recognize the endianness used.

https://lh3.googleusercontent.com/7ZKEtke_Gul9Em8e5H890KtLqGx7ADBjX8GallIeorrKETL1S_Am6z9vnicoQ4xPkx1AuUqWphnZOk8DsV10naB7LNklaHs00fgBvlbEM7L8YN4SuXPAJsU3l_-2-2z7cCJUbkfCM8c=w599-h864-no

In MIPS the way "syscall" used is also have its own uniqueness. Basically, a

designated service code for a syscall must be passed in $v0 register, and

arguments are passed in other registers. A simple way in assembly code to

recognize a syscall is as per below snipped code:

1

2

3

li $v0, 0x1

add $a0, $t0, $zero

syscall

Explanation: The "0x1" is stored in the "$v0" register (it doesn't have to be

assembly command "li" but any command in MIPS assembly in example

"addliu", etc, can be used for the same effect), which means the service code

used to print integer. The next line is to perform a copy value from the register

"$t0" to "$a0" (register where argument is usually saved).

Finally (the third line) the syscall code is there, with these components

altogether one "syscall" can be executed.

We can apply the above concept in the previously grep syscall result. The

objective is to recognize the address of its syscall wrapper function for this

stripped binary analysis purpose. For example, at the second result at

"0x004019d0" there's a syscall number, and by radare2 you go to that

location with seek (s) command and using visual mode we can figure the

function name in no time. I will show you how.

Let's fix the screen for it as per below so we can be at the same page:

(https://lh3.googleusercontent.com/UWsISGvXqqJh4PmV_nqNZxl9kBnWLvE

O54HsMaMUk2wVb7SvoBYoXYZzimzhJ6yfMkeQaDLJjH-

https://lh3.googleusercontent.com/UWsISGvXqqJh4PmV_nqNZxl9kBnWLvEO54HsMaMUk2wVb7SvoBYoXYZzimzhJ6yfMkeQaDLJjH-a85E7GHuakXHojkwZvQYUktHJe-YeV_mpQH62v01fHJvoqr-hhFVgQtX-9PXqde0=w1313-h786-no

a85E7GHuakXHojkwZvQYUktHJe-YeV_mpQH62v01fHJvoqr-hhFVgQtX-

9PXqde0=w1313-h786-no)

I marked the line where it is assigning "0xfa2" value to "$v0", and "0xfa2" is

the number registered for "fork" syscall in Linux MIPS 32bit OS, that's also

saying 0xfa2 is syscall number of sys_fork (system call for fork comnmand), if

you scroll up a bit you can see the function name "fcn.004019a0", which is the

"wrapper function" for this "syscall fork" or "sys_fork". The syscall

command will accept the passed syscall number stored in "$v0" to be

translated in the syscall table to pass it through the OS specific registered syscall

name alongside with the arguments needed to perform the further desired

syscall operation.

Noted that the syscall number can always be confirmed in designated Linux OS

in the file with the below formula, and more information on register assignment

on MIPS architecture that explains syscalls calling conventions can be read in

==>[link (https://www.linux-mips.org/wiki/Syscall)].

1

/usr/ include /{YOUR_ARCH}/asm/unistd_{YOUR_BIT}.h

The manual of syscall [link (http://man7.org/linux/man-

pages/man2/intro.2.html)] is a good reference explaining syscall wrapper in

libc. Quoted:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

https://lh3.googleusercontent.com/UWsISGvXqqJh4PmV_nqNZxl9kBnWLvEO54HsMaMUk2wVb7SvoBYoXYZzimzhJ6yfMkeQaDLJjH-a85E7GHuakXHojkwZvQYUktHJe-YeV_mpQH62v01fHJvoqr-hhFVgQtX-9PXqde0=w1313-h786-no
https://www.linux-mips.org/wiki/Syscall
http://man7.org/linux/man-pages/man2/intro.2.html

19

20

21

22

23

24

25

26

27

"Usually, system calls are not invoked directly:

instead, most system calls have corresponding C library wrapper

functions which perform the steps required (e.g., trapping to kernel

mode) in order to invoke the system call.

Thus, making a system call looks the same as invoking a

normal library function.

In many cases, the C library wrapper function does nothing more than:

* copying arguments and the unique system call number to the

registers where the kernel expects them;

* trapping to kernel mode, at which point the kernel does the real

work of the system call;

* setting errno if the system call returns an error number when the

kernel returns the CPU to user mode.

However, in a few cases, a wrapper function may do rather more than

this, for example, performing some preprocessing of the arguments

before trapping to kernel mode, or postprocessing of values returned

by the system call. Where this is the case, the manual pages in

Section 2 generally try to note the details of both the (usually GNU)

C library API interface and the raw system call. Most commonly, the

main DESCRIPTION will focus on the C library interface, and

differences for the system call are covered in the NOTES section."

Using this method, in no time you'll get the full list of the syscall function's used

by this malware as per following table that I made for myself during this analysis:

(https://lh3.googleusercontent.com/8pzLxcw3mFKNSm7swUDb4uoqlhiHG5

SRyPefc_vXnavNmf_KzUPxM6MSMbaG0iKqjNJPM8fH85Xu9BRRNuMcZAg

MJ50uECq1cJtwhHYXAzRE_R_mttQLLKv-lzfSDSYbPyAuwimqE9g=w703-

h851-no)

The rest is up to you on how to make it easy to name the strings for each "syscall"

for your purpose, I go by the above strings naming since it is fit to my RE

platform, I suggest you refer to Linux syscall base on naming them [link

(http://man7.org/linux/man-pages/man2/syscalls.2.html)].

The next step is, you may need to change all function name in radare2 according

to this "syscall table". Using the visual mode and analyze function name (afn)

command is the faster way to do it manually, or you can script that too, radare2

can be used with varied of methods, anything will do as long as we can get the

job's done. In my case I like to use these radare2 shell macro based on table I

made for myself:

1

2

3

4

5

:

s 0x0402060; af; afn ____connect; pdf | head

s 0x0401CF0; af; afn ____write; pdf | head

https://lh3.googleusercontent.com/8pzLxcw3mFKNSm7swUDb4uoqlhiHG5SRyPefc_vXnavNmf_KzUPxM6MSMbaG0iKqjNJPM8fH85Xu9BRRNuMcZAgMJ50uECq1cJtwhHYXAzRE_R_mttQLLKv-lzfSDSYbPyAuwimqE9g=w703-h851-no
http://man7.org/linux/man-pages/man2/syscalls.2.html

s 0x04019B0; af; afn ____fork; pdf | head

:

The result is as per seen in the below screenshot:

(https://lh3.googleusercontent.com/vUCsIhRlcbRREA7zIAMONKNvWgVPbp

Xa25SyeYQMyPZO9gyomb71MNvGLgRtDMSyyIDQHUDPBVimE5V2bGFEi

7mWMz5uRCr-

Qbr832Di0nyzyfmj5I4Agjmh7T7EcQs7htSKjn3B0Ds=w1025-h729-no)

Up to this way, we'll have all of the syscalls back in place :) Don't worry, you'll do

this faster if you get used to it.

https://lh3.googleusercontent.com/vUCsIhRlcbRREA7zIAMONKNvWgVPbpXa25SyeYQMyPZO9gyomb71MNvGLgRtDMSyyIDQHUDPBVimE5V2bGFEi7mWMz5uRCr-Qbr832Di0nyzyfmj5I4Agjmh7T7EcQs7htSKjn3B0Ds=w1025-h729-no
https://lh3.googleusercontent.com/IYmCXB_V2Vlkig32xlOeakyt2qrFQybfEz859-s2SGdeR4AcL-5wxjH9cBpi0AaHJolz9Tdxtsu2lSRrelkGldwYRIq7CTVvZp1ysWwDGjxcvzUrIpxSE33U5MHVRQfOpLUwEQby5tw=w1106-h949-no

(https://lh3.googleusercontent.com/IYmCXB_V2Vlkig32xlOeakyt2qrFQybfEz

859-s2SGdeR4AcL-

5wxjH9cBpi0AaHJolz9Tdxtsu2lSRrelkGldwYRIq7CTVvZp1ysWwDGjxcvzUrI

pxSE33U5MHVRQfOpLUwEQby5tw=w1106-h949-no)

The result looks cool enough for me to read the radare2 graph on examining how

this MIPS binary further goes..

(https://lh3.googleusercontent.com/UOcTIUCANA0k0L5XMtebHWVgP9IHs

Ef9nfjSXDyHWcrsM8bTKDK3bFJevBan-

Muib5_dbvvt0NKrh4XWclZ74wkH_ad5LNDNx7kh44f1imOS9k9MVYPfLQc

LX7OLuTEPBo01qoq7fuc=w1082-h957-no)

The next step is a generic way on reversing a stripped binary, by defining the

functions that is not part of Libc but likely coded by malware coder. For this

task, you have to check the rest of the function and seek whether the XREF

doesn't go to any of syscall wrapper functions, make sure that function itself is

not the main() function, init_proc() nor init_term() functions, and that goes to the

below leftover list, just naming it to anything you think it is fit with to what it

does.

https://lh3.googleusercontent.com/IYmCXB_V2Vlkig32xlOeakyt2qrFQybfEz859-s2SGdeR4AcL-5wxjH9cBpi0AaHJolz9Tdxtsu2lSRrelkGldwYRIq7CTVvZp1ysWwDGjxcvzUrIpxSE33U5MHVRQfOpLUwEQby5tw=w1106-h949-no
https://lh3.googleusercontent.com/UOcTIUCANA0k0L5XMtebHWVgP9IHsEf9nfjSXDyHWcrsM8bTKDK3bFJevBan-Muib5_dbvvt0NKrh4XWclZ74wkH_ad5LNDNx7kh44f1imOS9k9MVYPfLQcLX7OLuTEPBo01qoq7fuc=w1082-h957-no

In my case I named them this way:

(https://lh3.googleusercontent.com/r05PVYUL0HuujtiZStkvwRX7XnMm6y_7

fGTgOFftCf9rhA6dhjfRjlkQq83uMMxbbuZYIRjWP1ruNiqamlgVYx4zvHAu7S

GWiHLA1jZUT71_PZejKZfoBrFIcPvEPqCfG6TWNWKJfW0=w796-h338-no)

Then we can put the correct function name into the binary using the same macro

I showed you previously, then we are pretty much completed in making this

binary so readable... hold on, but read it from where? Where to start?

To pick a good place to start to start reversing, this command will help you to

pick some juicy spots, all the extractable strings will be dumped and we can pick

one interesting one to start, and go up to build the big picture.:)

Actually symbols are giving us much better options, but right now we don't have

anything else that is readable enough to start..

(https://lh3.googleusercontent.com/NkLmUQYR3h3rWhMvTQxdFdvcLM7ic

FVoHT27xvS_1IfQROjAUWJz0SrJv8PTsPyBYx_4Mouj6J4FCirSk4dt_dGwbnh

MOy1PahpEUzccYyxRKYX2AaPBt04qs9T9u_9Ya-zf5IfFiZk=w1252-h852-

no)

You can start to trace this binary from these text address reference and then go

up to the call in the main function that supports it. For example, by using the

https://lh3.googleusercontent.com/r05PVYUL0HuujtiZStkvwRX7XnMm6y_7fGTgOFftCf9rhA6dhjfRjlkQq83uMMxbbuZYIRjWP1ruNiqamlgVYx4zvHAu7SGWiHLA1jZUT71_PZejKZfoBrFIcPvEPqCfG6TWNWKJfW0=w796-h338-no
https://lh3.googleusercontent.com/NkLmUQYR3h3rWhMvTQxdFdvcLM7icFVoHT27xvS_1IfQROjAUWJz0SrJv8PTsPyBYx_4Mouj6J4FCirSk4dt_dGwbnhMOy1PahpEUzccYyxRKYX2AaPBt04qs9T9u_9Ya-zf5IfFiZk=w1252-h852-no

visual mode you can seek the XREF of each text to see how it is called from

which function and you can trail them further after that. This isn't going to be

difficult to read since you have all functions back in place.

The picture below is showing how the "air dropping" is referred to the caller

function.

(https://lh3.googleusercontent.com/XJmMCMDGdF8DIsxqOr9Y5sNd8Ta1X

9-

kIabOCeDfYvHrpzo0xUtsbzZ_sXF8AnIZ4m5RhhFqglDRvPGtqLLs4YbVsHwq

yx8m61YQFwBpXeMPazH5Qr0IQ3EJl5Y5FC_KHkg7G5KjmOE=w1693-

h818-no)

That's it. These methods I shared are useful methodology in analyzing Linux

MIPS-32 binary especially stripped ones like the one I have now. I think you're

good enough to go to complete your own analysis by yourself too. Please just

tried those methods if you don't have any other better ways and don't be afraid if

other RE tools can't make you read the MIPS-32 binary well, just fire the

radare2 with the tips written above, and everything should be okay :)

We go on with the malware analysis of this binary and its threat then..

What does this MIPS-32 binary do?

Practically. the MIPS binary is bot that is having a mission to infect the host it

was dropped into (note: so it needs a dropping scheme to go to the infected host

beforehand), making a malicious process called "cloudprocess", send message

of "airdopping clouds" through the standard output (that can be piped later

on). It is recording its "PID" and fork its process for the further step. The

message of "airdropping clouds" is the reason why I called this malware as

"AirDropBot" eventhough the coder prefer to use "Cloudbot", which there is

also a legitimate good software that uses that name too as their brand.

https://lh3.googleusercontent.com/XJmMCMDGdF8DIsxqOr9Y5sNd8Ta1X9-kIabOCeDfYvHrpzo0xUtsbzZ_sXF8AnIZ4m5RhhFqglDRvPGtqLLs4YbVsHwqyx8m61YQFwBpXeMPazH5Qr0IQ3EJl5Y5FC_KHkg7G5KjmOE=w1693-h818-no

Upon successful forking it will extract the what the coder so-called "encrypted

array", it's ala Mirai table crypted keywords in its concept, but it is different in

implementation., I must guess that it could be originally coded to avoid XOR

operation which is the worst Mirai bug in the history :) but this "encrypt_array"

is just ending up to an encoded obfuscation function :) - Anyhow the value from

this "decrypted" coded is used for further malware process.

Then the malware tries to connect to the C2 which its IP address is hard-coded

in the binary, on a success connection attempt to C2 server, it will parse the

commands sent by the C2 to perform three weaponized functions on the binary to

perform TCP, and UDP DDoS attack with either using the specific hex-coded

payload, or the latter on is using a custom pattern so-called "hex-attack" that sends

DoS packet in a hex escape strings format to the targeted host.

I will break it down to more details in its specific functions in the next sections.

The "encryption" (aka the obfuscation)

The challenge was the "encryption" part, it was I used radare2 with ESIL to see

the "encrypted" variables, as per snipped below as PoC:

The decryption is by [shift-1] as per shown in the cascade loop shown in every

encoded strings.

(https://lh3.googleusercontent.com/acWcBjk_zCrSN8cWdv3R16_Q5rTFA6Bk

https://lh3.googleusercontent.com/acWcBjk_zCrSN8cWdv3R16_Q5rTFA6Bk6anwMIIgRm70UZmNocYFg7xjoPxulZH7q7tJD73Ke2Py4C8mrz6vWZuCc18Y3JUuI-bP1KG5PDR0_DKijlWcXXm4b-gRfF6Dx0B8JCZo6sw=w915-h957-no

6anwMIIgRm70UZmNocYFg7xjoPxulZH7q7tJD73Ke2Py4C8mrz6vWZuCc1

8Y3JUuI-bP1KG5PDR0_DKijlWcXXm4b-gRfF6Dx0B8JCZo6sw=w915-h957-

no)

If we want to translate this decryoter scheme, it may look something like this

(below), I break it up in 3 functions but in assembly it is all in a function and

cascaded to each strings to be decoded:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

int encrypt_array()

{

array_splitter("xxxx");

array_splitter("yyyy");

:

}

int array_splitter(char *src)

{

strcpy (var_char_buffer, src);

char_decrypter(var_char_buffer);

array_counter++

return ;

}

https://lh3.googleusercontent.com/acWcBjk_zCrSN8cWdv3R16_Q5rTFA6Bk6anwMIIgRm70UZmNocYFg7xjoPxulZH7q7tJD73Ke2Py4C8mrz6vWZuCc18Y3JUuI-bP1KG5PDR0_DKijlWcXXm4b-gRfF6Dx0B8JCZo6sw=w915-h957-no

int char_decrypter(char *src2)

{

int i; strcpy (dstring, src2);

for (i = 0; strlen (dstring) > i; ++i)

strcpy (j, dstring);

return j++

}

The result for the "decryption" can be shown as per below, using ESIL with the

fake stack can be used to emulate this with the same result, so you don't need to

get into the debug mode:

(https://lh3.googleusercontent.com/noBKIHIM7EcFgLjZSxOhKz8LQEpp35Zz

9koi_UKtJ5Bea4IKoEFZCUQ6n3xGdlm5mQ_i2VW3imbQw_05TDuGG5nGq

QIXwtza0puf18xcG-eJ8eGdYWML3Fe7BciZIkQUfTPhAKAzA5k=w1334-

h445-no)

The last four strings:

1

2

3

4

5

/proc/

/maps

/cmdline

/status

/exe

...are used for taking information (process name) from the infected Linux box,

that will be used for the malware other functions like "killing" processes, etc.

The other decrypted strings are used for infecting purpose (known credentials

for telnet operation), and also for other botnet operation related.

https://lh3.googleusercontent.com/noBKIHIM7EcFgLjZSxOhKz8LQEpp35Zz9koi_UKtJ5Bea4IKoEFZCUQ6n3xGdlm5mQ_i2VW3imbQw_05TDuGG5nGqQIXwtza0puf18xcG-eJ8eGdYWML3Fe7BciZIkQUfTPhAKAzA5k=w1334-h445-no

Understanding the "decrypter" logic used is important because the same

decrypter is used again to decode the C2 sent commands to the active bots

before parsed and executed.

The C2, its commands and bot offensive activity

What happened after decryption (encrypt_array) of these strings is, the binary

gets into the loop to call the "connecting" function per 5 seconds. If I try to write

C code based on this stage it's going to be like below snipcode:

(https://lh3.googleusercontent.com/7ixBFIfJIpl10-

tFjuwNZnxM5uST7ui18PCXWrhJkyWsDwDmC3zqsi2U3Oh7KSaA5HXr_O8

0UuCTK3OEdcIhFG5aVCL42APA1QnMRRNjadXuZ9yVI2_hDmfQ-

K73Il7IWZkFdR49EGc=w1206-h448-no)

Within each loop, when it calls "connecting" function it will try to connect the

C2 which is defined a struct sockaddr "addr", pointing to port number (htons)

455 (0x1c7) and IP: "179.43.149[.]189".

(https://lh3.googleusercontent.com/g-kZIP8BUCU-

QDQHpCbOquFlEzAWK4PvlkUj3SKcJtFO1lvfN6FVKsYBrtUhaXAW2jcqlUd

O8X9BYAnlqGTBoFVYObdCuNaufaA1DBe1GobXyH81bEYwnG4vkJakv5m

AOJ5zEzzQGyc=w1529-h566-no)

When connected to C2, it will listen and receive the data sent by C2, to perform

decryption and then to send its decryption result (as per previous logic) to the

"command parsing" function, that's having "cmd_parse" sub-function

inside. The "command parsing" is delimiting received command with the

https://lh3.googleusercontent.com/7ixBFIfJIpl10-tFjuwNZnxM5uST7ui18PCXWrhJkyWsDwDmC3zqsi2U3Oh7KSaA5HXr_O80UuCTK3OEdcIhFG5aVCL42APA1QnMRRNjadXuZ9yVI2_hDmfQ-K73Il7IWZkFdR49EGc=w1206-h448-no
https://lh3.googleusercontent.com/g-kZIP8BUCU-QDQHpCbOquFlEzAWK4PvlkUj3SKcJtFO1lvfN6FVKsYBrtUhaXAW2jcqlUdO8X9BYAnlqGTBoFVYObdCuNaufaA1DBe1GobXyH81bEYwnG4vkJakv5mAOJ5zEzzQGyc=w1529-h566-no

white space " " for the "cmd_parse" to grep three possible keywords of "udp",

"tcp", and "hex", which in next paragraph those keywords will be explained

further.

Below is the loop when the command from C2 is received (listened) inside the

"connecting" function in radare2:

(https://lh3.googleusercontent.com/hM9wjDRiIr8nfh6Xzie_z0V70SSVksMC1

1zF7Lq9naP8cxw9aMzf4RIGP5NKZxovmvx_wFNCwg_AFFHF9kYX2D1XAe

wZb3br55KJu3T37T6JilkmR7LvGAfEjiujwqdrPd4Pq2YXMHg=w1682-h809-

no)

Now we come into the offensive capability of this bot binary. The "udp" keyword

will trigger the execution of "udpattack" function, "tcp" will execute

"tcpattack" and so does the "hex" for executing the "hexattack" function.

Each of the trigger keywords are followed by arguments that are passed to its

related attack function, it emphasizes that a textual basis DoS attack command

line starting with udp, tcp or hex, following by the targets or optional attack

parameters are pushed from the C2 to the AirDropBots. Based on experience, the

C2 CLI interface of recent DDoS botnets is having such interface matched to

this criteria.

https://lh3.googleusercontent.com/hM9wjDRiIr8nfh6Xzie_z0V70SSVksMC11zF7Lq9naP8cxw9aMzf4RIGP5NKZxovmvx_wFNCwg_AFFHF9kYX2D1XAewZb3br55KJu3T37T6JilkmR7LvGAfEjiujwqdrPd4Pq2YXMHg=w1682-h809-no

TCP and UDP is having the same payload packet in binary is as per below:

(https://lh3.googleusercontent.com/Lk2Hc_RJ1gx6DoJD3ZNE9b0RCWJKTh

GTbByQtk5NlnYLcZTMF_QIkvb7YUO57SGPQvPDJACxY4JTTfg2OEOKW7

EZBrxjtfp04ChDomXYUEx-2ZVbrKmFPkinRUUKJxX_3xH18t-3qAE=w1175-

h896-no)

...that is sent from tcpattack() and udpattack() in TCP and UDP different

socket connection from the target sent by C2.

The hexattack is having a different payload that looks like this:

(https://lh3.googleusercontent.com/spFNmVuSFxLv2ZJxkX1d1eaa8ghPhizY1

M3TI4MgAZOZfg12nnCvy3qd7zBeIdwMMnEn2mEin_X3B6GDB0cfBM9sHj

tBjvSz-eVk9tvGFPtVSuvm3NMUpoMW7XLBaJrc-5KeGFTeQuM=w1329-

h326-no)

One last command is is "killyourself" (taken from decrypted table that was

saved in a var) that will stop the scanning function fork with the flow more or less

like this:

1

2

3

4

https://lh3.googleusercontent.com/Lk2Hc_RJ1gx6DoJD3ZNE9b0RCWJKThGTbByQtk5NlnYLcZTMF_QIkvb7YUO57SGPQvPDJACxY4JTTfg2OEOKW7EZBrxjtfp04ChDomXYUEx-2ZVbrKmFPkinRUUKJxX_3xH18t-3qAE=w1175-h896-no
https://lh3.googleusercontent.com/spFNmVuSFxLv2ZJxkX1d1eaa8ghPhizY1M3TI4MgAZOZfg12nnCvy3qd7zBeIdwMMnEn2mEin_X3B6GDB0cfBM9sHjtBjvSz-eVk9tvGFPtVSuvm3NMUpoMW7XLBaJrc-5KeGFTeQuM=w1329-h326-no

5

6

result = strstr (var_parsed_cmd, "killyourself");

if (result)

{ kill(scanner_fork_PID, 9);

exit (0);

}

return result;

..and the kill function above is executing "kill -9" by calling int kill(__pid_t pid, int

sig).

As additional, in the older version, there is also another C2 command called:

"http" that will execute "httpattack" function that is using HTTP to perform

L7 DoS attack using the combination of User-Agents, but in this sample series I

don't see such function.

Is there any difference between MIPS and other
binaries?

Oh yes it has. The Intel and ARM version (or to binary that is having a scanner

function) is interestingly having more functions. If I go to details on each

functions for Intel binary maybe I will not stop writing this post, so I will

summary them below with a pseudo code snips if necessary.

1. The "array_kill_list" function

This function is used to kill process that matched to these strings:

https://lh3.googleusercontent.com/HVi8itsXjqMMip7pxra9El0AgDtI7cBiqbFIt80GR3fm94LDrkPqntm4huOi4NKKBntBqZO_Ggxl5HV-V-vk-VkRwI9stSk2I5ZADHqjX52ZalJe6-kbtQ4SmNrBlUiMT_v_WvXy3aQ=w1333-h917-no

(https://lh3.googleusercontent.com/HVi8itsXjqMMip7pxra9El0AgDtI7cBiqbF

It80GR3fm94LDrkPqntm4huOi4NKKBntBqZO_Ggxl5HV-V-vk-

VkRwI9stSk2I5ZADHqjX52ZalJe6-kbtQ4SmNrBlUiMT_v_WvXy3aQ=w1333-

h917-no)

It seems this is how the bot herder gets rid of the competitor if they're in the

same infected Linux box.

This "array_kill_list" is accessed from killer() function that is being executed

before going to "connecting" loop in the main for Intel version.

The killer function is having multiple capability to stop unwanted processes too,

it will be too long to describe it one by one but in simple C code and comments

as per picture below will be enough to get the idea:

(https://lh3.googleusercontent.com/V0njSMnfXKTOeSHIHYZ8ugh5mPlO06j

5L22DJJPKoW7fXIMEXt1n5zyX1au7-CWQm57lP-

2orTQ42EpMfp9OTQN9-

57alujKLYU5ZV5Mqr3KXAMyAoQxBs6nXhEiJm5fIEHlRvk-iJI=w1164-

h260-no)

2. The scanner, the spreader via exploit

https://lh3.googleusercontent.com/HVi8itsXjqMMip7pxra9El0AgDtI7cBiqbFIt80GR3fm94LDrkPqntm4huOi4NKKBntBqZO_Ggxl5HV-V-vk-VkRwI9stSk2I5ZADHqjX52ZalJe6-kbtQ4SmNrBlUiMT_v_WvXy3aQ=w1333-h917-no
https://lh3.googleusercontent.com/V0njSMnfXKTOeSHIHYZ8ugh5mPlO06j5L22DJJPKoW7fXIMEXt1n5zyX1au7-CWQm57lP-2orTQ42EpMfp9OTQN9-57alujKLYU5ZV5Mqr3KXAMyAoQxBs6nXhEiJm5fIEHlRvk-iJI=w1164-h260-no

The bot herder is aiming Lynksys tmUnblock.cgi of a known router's brand,

the vulnerability that has to be patched since published 5 years ago. For this

purpose, in intel and ARM binaries right after killer() function it runs scanner()

function, targeting randomized formed IP addresses, using a hard-coded

"payload" data, spoofed its origin by faking the HTTP request headers (for

"tcp" or "http" flood), which is aiming TCP port 8080 with the code translated

from assembly to simplified C code looks like below:

(https://lh3.googleusercontent.com/jTBJGvnSM7n9_bEUHmtphthEU3AlHGV

ptVEhtqBaBr_Wh72-

EeDBLo2KxZnuqIr9R23_b4Pv11xs_5TdcWIapFgkYWLAmRB916509Zgm6d

MQtioHWplwULRxViJ5Qg8wPbfGekwabjI=w1272-h733-no)

https://lh3.googleusercontent.com/jTBJGvnSM7n9_bEUHmtphthEU3AlHGVptVEhtqBaBr_Wh72-EeDBLo2KxZnuqIr9R23_b4Pv11xs_5TdcWIapFgkYWLAmRB916509Zgm6dMQtioHWplwULRxViJ5Qg8wPbfGekwabjI=w1272-h733-no

This scanner is having four pattern of payloads which I quickly paste it below for

your reference if you are either receiving or researching this attack:

(https://lh3.googleusercontent.com/hB2-mqV_8uY9GVoUR_m8t6YCY5-

8rOl6MLlnKUm_Pk3NQravN6vA97XoIT11L9qiCU-

7CZRHy3Nr1LZAWI0QiLAGZQK-du-3uMJwqZlr3bX61H-

koBTwLzM6U3P0GSPy88tClXf-pkI=w1446-h621-no)

(https://lh3.googleusercontent.com/okD2EfeRc0W-IzchoGWt59r-

L6cHUlHaFE9dtvlT90Zc2LlHsBqGwvV5riwmc9uZTDZLNWV4lybBmEhPz2

033eaQ4zT_AvAqdruRE8nDSNKY85bgJjVbwPVoytvMKMW9yUiKb0-

FhxA=w1521-h781-no)

Maybe one of the thing that I may suggest for this bot's scanner functionality is

what it seems like a spoof capability. I examined into low level for code

generation of about this part and found what the send syscall performed when

AirDrop bot make scanning with exploit is interesting :) please take a look

yourself of what has been recorded as per below snipcodes:

(https://lh3.googleusercontent.com/IfTEhUs7ZOe4_fg800SbN3Z3cMSmZxr0

https://lh3.googleusercontent.com/hB2-mqV_8uY9GVoUR_m8t6YCY5-8rOl6MLlnKUm_Pk3NQravN6vA97XoIT11L9qiCU-7CZRHy3Nr1LZAWI0QiLAGZQK-du-3uMJwqZlr3bX61H-koBTwLzM6U3P0GSPy88tClXf-pkI=w1446-h621-no
https://lh3.googleusercontent.com/okD2EfeRc0W-IzchoGWt59r-L6cHUlHaFE9dtvlT90Zc2LlHsBqGwvV5riwmc9uZTDZLNWV4lybBmEhPz2033eaQ4zT_AvAqdruRE8nDSNKY85bgJjVbwPVoytvMKMW9yUiKb0-FhxA=w1521-h781-no
https://lh3.googleusercontent.com/IfTEhUs7ZOe4_fg800SbN3Z3cMSmZxr0UpR2Z_5hZWT4lPmGh7eWvg7uT5bsT5EdhDIP2XQul9a7dxgNVm-vf06uon_SI2jIY-f6Y8US3fIo3AsHfHe6ZCucdEXetFMPVCOrhRoLvi4=w1500-h449-no

UpR2Z_5hZWT4lPmGh7eWvg7uT5bsT5EdhDIP2XQul9a7dxgNVm-

vf06uon_SI2jIY-

f6Y8US3fIo3AsHfHe6ZCucdEXetFMPVCOrhRoLvi4=w1500-h449-no)

On those "scanner" function supported binary, the spreading scheme is

executed with targeting random generated IP addresses by calling sub-function

"get_random_ip" right after the the C2 has been attempted to call, and is using

the same socket for multiple effort to infect Linksys CGI vulnerability. Below is

the record in re-production this activity:

(https://lh3.googleusercontent.com/ApPUPuGS1eDAvqpmVrEz4YRcgNxYfE1

8L1fP81B3a6zOeBLjD-

0yXF4dwlyYzqrOSZndxO2GqHvwt0V9t5jYlAMkpQtrPGmc8cLSXDaUFMTu

HHY9rEmq7gz0r1kFuqEmMcoLt0JZ9zI=w963-h766-no)

3. The "singleInstance" function

This is a code to make sure that there is no duplication of "cloudprocess"

process that runs after a device getting infected. It's a simple code to kill -KILL

the PID of detected double instance. You can easily reverse and examine it by

yourself.

https://lh3.googleusercontent.com/IfTEhUs7ZOe4_fg800SbN3Z3cMSmZxr0UpR2Z_5hZWT4lPmGh7eWvg7uT5bsT5EdhDIP2XQul9a7dxgNVm-vf06uon_SI2jIY-f6Y8US3fIo3AsHfHe6ZCucdEXetFMPVCOrhRoLvi4=w1500-h449-no
https://lh3.googleusercontent.com/ApPUPuGS1eDAvqpmVrEz4YRcgNxYfE18L1fP81B3a6zOeBLjD-0yXF4dwlyYzqrOSZndxO2GqHvwt0V9t5jYlAMkpQtrPGmc8cLSXDaUFMTuHHY9rEmq7gz0r1kFuqEmMcoLt0JZ9zI=w963-h766-no

Below is the example ARM-32 assembly code for this function with my

comments in it just in case:

(https://lh3.googleusercontent.com/-

lMy_XTyRgqwC72_aNnEp_fZ8D4n4CfGiQs7iuCxXc7pfKoi0ftfGwazL8aLdxL

FFZuwBAFga2LkH_FtjdAYtCvfe2mg8bQsfdNd1oaMF8vojlPkMMwTQKQe1L

PoEG95zLW9aJppu5s=w1692-h686-no)

for the right side of code, if I write that in C it's going to be something like this,

more or less:

(https://lh3.googleusercontent.com/d0MWT2JgMm6eqLIr9CA_X4IfzQgmVb-

eVVRIk1Drsds5nXdhjXOMw0alS3pNMlXw3dkXh5A4dzssx9KfvSqCX5S37N

KzUQOCWEzKNIQE93LHy4RunnOijvqywmxVfg6sgQZQGFnY8qo=w630-

h454-no)

BONUS: AirDropBot and the custom ELF packer
case

As per other ELF badness produced by botnet adversaries in the internet, the

AirDropBot is having binary that is packed with custom packer too.

https://lh3.googleusercontent.com/-lMy_XTyRgqwC72_aNnEp_fZ8D4n4CfGiQs7iuCxXc7pfKoi0ftfGwazL8aLdxLFFZuwBAFga2LkH_FtjdAYtCvfe2mg8bQsfdNd1oaMF8vojlPkMMwTQKQe1LPoEG95zLW9aJppu5s=w1692-h686-no
https://lh3.googleusercontent.com/d0MWT2JgMm6eqLIr9CA_X4IfzQgmVb-eVVRIk1Drsds5nXdhjXOMw0alS3pNMlXw3dkXh5A4dzssx9KfvSqCX5S37NKzUQOCWEzKNIQE93LHy4RunnOijvqywmxVfg6sgQZQGFnY8qo=w630-h454-no

The below file [link

(https://www.virustotal.com/gui/file/187492dca212f30e70cc7226a28f3704

abd7fe37f1d4c33a70884539c670c05f/detection)] is one good real example

of AirDropBot ELF in packed mode, the VirusTotal detection is like below:

(https://lh3.googleusercontent.com/9v1IjEJq6zWlGRk7FkDt2dTGSijTFlocRo

R9clPkR0tLByVfyVn1fQIjM9YOYC2uGSd0MIU1Pm9RMTBDLZNS_mylxX_1

We5WXhwht86f3JoXmNRiUoAy9KwDKoKFTZXzU5v-a8E7cGk=w835-

h607-no)

This sample is spotted in the wild a while ago on trying to infect one of my

honeytraps. The "file" result looks like this:

1

x86.cloudbot: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), statically link

The binary is packed and by reading the assembly flow in the packer codes we

can tell it is a UPX-like packer. It looks like this:

(https://lh3.googleusercontent.com/wqIROGSa9mA44GCix1fLk-

GzqUoVGTvhz6BKTKSXDBAQrdainlA5Ht47A3KArXZXX5ygasdS6iMupM-

OIaTquayRjuxOdnin-NnyksqoXligzatFasqn2l-bQaQPkgESwtMle-

0Sk5U=w1805-h940-no)

https://www.virustotal.com/gui/file/187492dca212f30e70cc7226a28f3704abd7fe37f1d4c33a70884539c670c05f/detection
https://lh3.googleusercontent.com/9v1IjEJq6zWlGRk7FkDt2dTGSijTFlocRoR9clPkR0tLByVfyVn1fQIjM9YOYC2uGSd0MIU1Pm9RMTBDLZNS_mylxX_1We5WXhwht86f3JoXmNRiUoAy9KwDKoKFTZXzU5v-a8E7cGk=w835-h607-no
https://lh3.googleusercontent.com/wqIROGSa9mA44GCix1fLk-GzqUoVGTvhz6BKTKSXDBAQrdainlA5Ht47A3KArXZXX5ygasdS6iMupM-OIaTquayRjuxOdnin-NnyksqoXligzatFasqn2l-bQaQPkgESwtMle-0Sk5U=w1805-h940-no

If you follow my presentation in R2CON2018 in the last part (the main course)

about unpacking with radare2 for an unknown packer, the same method can be

applied for you to get the OEP by implementing several "bp" on the unpacker

processes. There are slides and video for that, use this link for some more

information: [link

(https://www.reddit.com/r/LinuxMalware/comments/9eqn6m/about_my_pres

entation_of_unpacking_the/)]

That is exactly the method I applied to unpack this ELF.

Then next, after you bp to part where packed code copied to the base memory

defined in the LOAD0 section, I will share "my way to" easily extract the

unpacked ELF afterward:

(https://lh3.googleusercontent.com/uhrS7W3YM-

9tJQUjG2cdJQPCNyxulcap_6pG3v5ielWmW8Q4Tau5HaLH6Id56YmGdumD

AqToAdSVaDrbWEVvJIRkx3WXJACEklJGJm-

3ABRJgRUXPs5UtKQOLpbggxozv97Ai9pmDR0=w1199-h957-no)

ELF file headers is having enough information to be rebuilt, let's use it, assuming

the header table is the last part of the ELF the below formula is more or less

describing the size of the unpacked object:

1

2

3

4

5

https://www.reddit.com/r/LinuxMalware/comments/9eqn6m/about_my_presentation_of_unpacking_the/
https://lh3.googleusercontent.com/uhrS7W3YM-9tJQUjG2cdJQPCNyxulcap_6pG3v5ielWmW8Q4Tau5HaLH6Id56YmGdumDAqToAdSVaDrbWEVvJIRkx3WXJACEklJGJm-3ABRJgRUXPs5UtKQOLpbggxozv97Ai9pmDR0=w1199-h957-no

6

7

8

9

10

11

e_shoff + (e_shentsize * e_shnum) = +/- file_size

0x00013af8 + (0x0028 * 0x0013) = file_size

? (0x0028 * 0x0013) + 0x00013af8|grep hex

And.. there you go, this is my unpacked file: [link

(https://www.virustotal.com/gui/file/e42964a8d5aa0d82bf2eda129d422baa

4201600c92a89af0f3fdbd67cfed40e0/detection)]

https://www.virustotal.com/gui/file/e42964a8d5aa0d82bf2eda129d422baa4201600c92a89af0f3fdbd67cfed40e0/detection

Next, let's see the detection ratio of this packed binary in Virus Total after

successfully unpacked (..well, at least it is two points higher than the packed one)

:

(https://lh3.googleusercontent.com/-_EylHP07T_O-

6HFKW7rmzCU_ar3tW0ceJoepMsfYeEhW5lZTyKsk-

7GoAVtTn0CTFU5SOSL7UH2XObd-HhXCVXJCR0W-s6VdCvtqED67X-

ALhEEl69b-I9Bl87JGIY_ltE-Fhn2GJg=w829-h607-no)

And the binary after unpacked is very much readable now..and BOOM! the C2

of this packed ELF is in 185.244.25[.]200, 185.244.25[.]201, and

185.244.25[.]202 are revealed! :)) Now we know why the adversary wanted to

pack their binary that bad.

(https://lh3.googleusercontent.com/7yhl8IWlsrhepienGpDNseP80SEB3ig4j-

7m68Ux-

yz31tVHMWh10PrK5QRcsvnERtbTsmkIxLMU12D0h2pMOrzOaEU30YM6P

ulX4sVH2-XUSbptAJTt2kNkL7HyifhNirrWWwT7Fkk=w954-h595-no)

For the addition, nowadays IoT botnet adversaries are not only packing the Intel

binaries, but the embedded platform's (some are RISC cpu too) Linux binary are

often seen packed also with the custom packers. Like in this similar threat report

I made [link (https://imgur.com/a/Ak9zICq)], with the ELF binary for MIPS cpu

https://lh3.googleusercontent.com/-_EylHP07T_O-6HFKW7rmzCU_ar3tW0ceJoepMsfYeEhW5lZTyKsk-7GoAVtTn0CTFU5SOSL7UH2XObd-HhXCVXJCR0W-s6VdCvtqED67X-ALhEEl69b-I9Bl87JGIY_ltE-Fhn2GJg=w829-h607-no
https://lh3.googleusercontent.com/7yhl8IWlsrhepienGpDNseP80SEB3ig4j-7m68Ux-yz31tVHMWh10PrK5QRcsvnERtbTsmkIxLMU12D0h2pMOrzOaEU30YM6PulX4sVH2-XUSbptAJTt2kNkL7HyifhNirrWWwT7Fkk=w954-h595-no
https://imgur.com/a/Ak9zICq

(noted: big endian one), sample that was actually spotted inside of the house of a

victim (in his MIPS IoT daily used device, I won't disclose it further). I analyzed

and unpacked it, to find that is not only "UPX!" bytes tampering that has been

replaced.

Let me quote it in here too about my suggested unpacking methods for

embedded Linux binaries I wrote in the linked post, as follows:

1

2

3

4

5

6

7

8

9

10

11

12

"There are other radare2 ways also for unpacking and extracting

unpacked sample manually too.

The " dmda " is also useful to dump but it's maybe a bit hard effort to

run it on embedded system, or, you can fix the load0 and load1 that can

also be done after you grab " OEP

", or, you can also break it in the exact

rewriting process to the base address, but either ways, should be able

to unpack it.

First ones will consume workspace in the memory for performing it.. I

don't think RISC systems has much luxury in space for that purpose,

but the latter one in some circumstance can be performed in ESIL mode."

The thing is you should master all of those methods, and only by that most of

binary packing possibility in Linux can be solved manually without depending

on UPX or any automation tools.

"So don't worry, just fire your radare2, and everything will be just Okay!"

:D (my favorite motto)

In a short summary as the conclusion

This binaries are a DoS bot clients, a part of a DDoS botnet. It spread as a worm

with currently aiming Lynksys tmUnblock.cgi routers derived by non MIPS built

binaries that infects machines to act as payload spreader too. I must warn you

that I did not check the details in every 26 binaries came up during this

investigation, but I think the general aspect is covered.

These are malware for Linux platform, it has backdoor, bot functions and are

having infection capability with aiming vulnerability in routers CGI or telnet.

The malware is coded with many originality intact, again, it is a newly coded, it

is not using codes from Mirai-like, GafGyt (Qbot/Torlus base), or Kaiten (or STD

like), but I can tell that the development is not mature yet. I was about to name it

as "Cloudbot" but it looks like there is a legitimate software already using it so I

switched to the "Airdropbot" instead due to the hardcoded message printed on a

success infection. This is a new strain of various library of IoT botnet, I hope that

other security entities and law enforcer aware of what has just been occurred

here, before it is making bigger damage like Mirai botnet did before.

Detection methods

Binary detection

For the binary signature method of detection. The unpacked version will hit just

fine. But since the AirDropBot was developed to support many embed platform

from various CPU and "endianness" type, to detect it precisely you may need to

code several signatures. However, if you see the typical functions of their binary

carefully, so it is yes, one generic rule can be generated and applied. For that I

PoC'ed it myself to develop a bit complex Yara rules to detect them all and to

recognize which binary that is having the scanner and not.

The snippet code and scan example is as per screenshot below.

(https://lh3.googleusercontent.com/s5lx6Kkvbrk65QV33QipOyahPxKd3OTf

DwUfjRDCSYBvFI2Q4-

PNe3hscAYt4oJ5nzRWU0g9N4ZEvtvgBxiuZU43F4q2Ew6e4qcZc9kYBuUztZ

g7F9BF2CftPzf4E7PWfFmgRatc1Ow=w1478-h853-no)

Traffic detection

For the traffic detection, there are two methods that you can apply as detection:

(1) The Initial Connection and activities of AirDropBot does right after the

success infection, or (2) the DoS traffic, I am explaining both as follows.

The Initial connection detection is related to the nature of this malware, which is

connecting to C2 and performing scanning for vulnerabilities aiming random IP

in 8080. I can suggest a nice Suricata or Snort rule can be coded for connection

that's aiming TCP/455 (C2 connection port), but the C2 port can be changed by

the adversaries too on their next campaign, but that's not going to be easy for

them to prepare all of those varied binaries and C2 port changes immediately

(smile). The other way is to focus on the scanner payloads as per described in

some of pictures above, the Surucata rules to detect them will last longer IF the

same vulnerability is still being aimed.

https://lh3.googleusercontent.com/s5lx6Kkvbrk65QV33QipOyahPxKd3OTfDwUfjRDCSYBvFI2Q4-PNe3hscAYt4oJ5nzRWU0g9N4ZEvtvgBxiuZU43F4q2Ew6e4qcZc9kYBuUztZg7F9BF2CftPzf4E7PWfFmgRatc1Ow=w1478-h853-no

(https://lh3.googleusercontent.com/roaBiLZkqwv5s8d7vWQ7677_meMN8O

018aZOqoJHFwBbRk4KoBu_SO3XAhrQkPCcb-

Txcu2HKObZI6vK99wpIkopbN5wwM5QyKI-

YIQ5G5jKAT_FUBcI3rSjvVl6MK5w-glQXDIEDbc=w1690-h873-no)

The other detection is by using the AirDropBot's hardcoded flood packets, which

I was in purpose whoring them in the attached pictures above too. This way you

may be able to recognize the DoS traffic activity performed by this threat in the

future DDoS incidents. Sucicata and Snort rules are supported for this purpose.

The bad actors and his gang are still at large and reading this blog post too :) , I

am sorry I can not share the generic scanning code I made in here, but the

screenshots I provided are enough for fellow reversers to recognize and

implement these detection methods to filter these series of AirdropBot activities.

The rest is OpSec.

Hashes and IOC information

The hashes are listed as per below and IOC has been posted to MISP and OTX

for all blue-teamer community to be noticed.

1

2

3

4

5

6

7

8

9

10

https://lh3.googleusercontent.com/roaBiLZkqwv5s8d7vWQ7677_meMN8O018aZOqoJHFwBbRk4KoBu_SO3XAhrQkPCcb-Txcu2HKObZI6vK99wpIkopbN5wwM5QyKI-YIQ5G5jKAT_FUBcI3rSjvVl6MK5w-glQXDIEDbc=w1690-h873-no

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

../bins/aarch64be.cloudbot | 417151777eaaccfc62f778d33fd183ff

../bins/arc.cloudbot | d31f047c125deb4c2f879d88b083b9d5

../bins/arcle-750d.cloudbot | ff1eb225f31e5c29dde47c147f40627e

../bins/arcle-hs38.cloudbot | f3aed39202b51afdd1354adc8362d6bf

../bins/arm.cloudbot | 083a5f463cb84f7ae8868cb2eb6a22eb

../bins/arm5.cloudbot | 9ce4decd27c303a44ab2e187625934f3

../bins/arm6.cloudbot | b6c6c1b2e89de81db8633144f4cb4b7d

../bins/arm7.cloudbot | abd5008522f69cca92f8eefeb5f160e2

../bins/fritzbox.cloudbot | a84bbf660ace4f0159f3d13e058235e9

../bins/haarch64.cloudbot | 5fec65455bd8c842d672171d475460b6

../bins/hnios2.cloudbot | 4d3cab2d0c51081e509ad25fbd7ff596

../bins/hopenrisc.cloudbot | 252e2dfdf04290e7e9fc3c4d61bb3529

../bins/hriscv64.cloudbot | 5dcdace449052a596bce05328bd23a3b

../bins/linksys.cloudbot | 9c66fbe776a97a8613bfa983c7dca149

../bins/m68k-68xxx.cloudbot | 59af44a74873ac034bd24ca1c3275af5

../bins/microblazebe.cloudbot | 9642b8aff1fda24baa6abe0aa8c8b173

../bins/microblazeel.cloudbot | e56cec6001f2f6efc0ad7c2fb840aceb

../bins/mips.cloudbot | 54d93673f9539f1914008cfe8fd2bbdd

../bins/mips2.cloudbot | a84bbf660ace4f0159f3d13e058235e9

../bins/mpsl.cloudbot | 9c66fbe776a97a8613bfa983c7dca149

../bins/ppc.cloudbot | 6d202084d4f25a0aa2225589dab536e7

../bins/sh-sh4.cloudbot | cfbf1bd882ae7b87d4b04122d2ab42cb

../bins/sh4.cloudbot | b02af5bd329e19d7e4e2006c9c172713

../bins/x86.cloudbot | 85a8aad8d938c44c3f3f51089a60ec16

../bins/x86_64.cloudbot | 2c0afe7b13cdd642336ccc7b3e952d8d

../bins/xtensa.cloudbot | 94b8337a2d217286775bcc36d9c862d2

Salutation & Epilogue

I would like to thank to @0xrb for his persistence trying to convince me that this

binary is interesting. It is interesting indeed, and as promised, this is the analysis

I did after work, writing this in 8hours more non-stop. Thank's also for other

readers who keep on supporting MMD, and as team, we appreciate your

patience in waiting for our new post.

Thank you pancake and Radare2 teams who keep on making radare2 the

best RE tools for UNIX (All of the radare2 reversing was done in FreeBSD OS,

thank you for your great support to FreeBSD!), and also I thank Tsurugi

DFIR team for your great forensics tools. For these open source security

frameworks I still keep on helping with tests and bug reports.

Okay, I will rest and will wordsmith some miserable jargon parts of the post later,

maybe I will add detail that I didn't have much time to write it now, or, to correct

some minor stuff. In the mean time, enjoy the writing, please share with

mention or using #MalwareMustDie hashtag. This post is a start for more posts

to come.

A tribute to the newborn radare2 community in Japan "r2jp", that we

established in 2013 together with "pancake" on AVTokyo workshop in Tokyo,

Japan.

This technical analysis and its contents is an original work and firstly published in the

current MalwareMustDie Blog post (this site), the analysis and writing is made by

@unixfreaxjp.

The research contents is bound to our legal disclaimer guide line

(https://blog.malwaremustdie.org /p/the-rule-to-share-malicious-codes-we.html) in

sharing of MalwareMustDie NPO research material.

https://blog.malwaremustdie.org/p/the-rule-to-share-malicious-codes-we.html

Malware Must Die!

blog.malwaremustdie.org (https://blog.malwaremustdie.org/2019/09/mmd-0064-
2019-linuxairdropbot.html) · by unixfreaxjp · September 28, 2019

https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html

