
Cisco Talos Intelligence Blog

Spoofed SEC Emails Distribute Evolved
DNSMessenger

By Edmund Brumaghin, Colin Grady, David Maynor

WEDNESDAY, OCTOBER 11, 2017 12:10

This post was authored by Edmund Brumaghin, Colin Grady, with contributions from Dave Maynor and
@Simpo13.

Executive Summary

https://blog.talosintelligence.com/author/edmund-brumaghin/
https://blog.talosintelligence.com/author/colin/
https://blog.talosintelligence.com/author/david/
https://twitter.com/b4n1shed
https://twitter.com/ColinGrady
https://twitter.com/Dave_Maynor
https://twitter.com/Simpo13

Cisco Talos previously published research into a targeted attack that leveraged an interesting
infection process using DNS TXT records to create a bidirectional command and control (C2)
channel. Using this channel, the attackers were able to directly interact with the Windows Command
Processor using the contents of DNS TXT record queries and the associated responses generated
on the attacker-controlled DNS server.

We have since observed additional attacks leveraging this type of malware attempting to infect
several target organizations. These attacks began with a targeted spear phishing email to initiate the
malware infections and also leveraged compromised U.S. state government servers to host
malicious code used in later stages of the malware infection chain. The spear phishing emails were
spoofed to make them appear as if they were sent by the Securities and Exchange Commission
(SEC) in an attempt to add a level of legitimacy and convince users to open them. The organizations
targeted in this latest malware campaign were similar to those targeted during previous
DNSMessenger campaigns. These attacks were highly targeted in nature, the use of obfuscation as
well as the presence of a complex multi-stage infection process indicates that this is a sophisticated
and highly motivated threat actor that is continuing to operate.

Technical Details

The emails associated with this malware campaign were spoofed to make them appear as if they
had originated from the Securities and Exchange Commission (SEC) Electronic Data Gathering,
Analysis, and Retrieval (EDGAR) system. For those not familiar with this system, EDGAR is an
automated filing platform that organizations can use to submit filings which are legally required to
be performed by publicly traded companies. This was likely done to increase the perceived
legitimacy of the emails and increase the chances that the recipient would open the email and
associated attachments.

The emails themselves contained a malicious attachment that when opened would initiate a
sophisticated multi-stage infection process leading to infection with DNSMessenger malware. The
malicious attachments were Microsoft Word documents. Rather than leveraging macros or OLE

https://blog.talosintelligence.com/dnsmessenger

objects, which are some of the most common ways that Microsoft Word documents are leveraged
to execute code, these attachments leveraged Dynamic Data Exchange (DDE) to perform code
execution. A description of this technique has been published here. This technique has recently been
publicized following a Microsoft decision that this functionality is a feature by design and will not be
removed. We are now seeing it actively being used by attackers in the wild, as demonstrated in this
attack.

Similar to the emails described above, the malicious attachments were made to appear as if they
had originated from the SEC and include logos and branding as well as information that would be
expected from any documents received from the SEC. When opened, victims would be greeted with
a message informing them that the document contains links to external files, and asking them to
allow/deny the content to be retrieved and displayed.

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

In the case of this attack, if the user allows the external content to be retrieved, the malicious
document will reach out to attacker hosted content to retrieve code that will be executed to initiate
the malware infection. Interestingly, the DDEAUTO field used by this malicious document retrieved
code that the attacker had initially hosted on a Louisiana state government website, which was
seemingly compromised and used for this purpose. The DDEAUTO command that is executed is
below:

The aforementioned command results in the code hosted at the referenced URL to be downloaded
and executed directly using Powershell. The contents of the code that is retrieved from the server is
Powershell code and includes a code blob that is both Base64 encoded and gzipped. The code is

retrieved, deobfuscated, then passed to the Invoke-Expression (IEX) cmdlet and executed by
Powershell.

The deobfuscated code is responsible for staging and kicking off subsequent stages of the infection
process. It is also responsible for achieving persistence on systems. The code features a number of
ways that persistence may be achieved depending on the operating environment of the malware. It
determines the version of Powershell on the infected system as well as the access privileges of the
user to determine how to proceed with achieving this persistence.

First, a blob of code called $ServiceCode, which is also both base64 encoded and compressed
using gzip, is written to the Windows registry using the following Powershell command:

A second block of code present in the Powershell is called $stagerCode and is responsible for
extracting and decoding the code that was previously stored in the registry, then executing this code,
first checking for the presence of the mutex '1823821749'. If this mutex does not exist, execution
continues.

The malware then attempts to write the contents of $stagerCode along with the appropriate
PowerShell command to execute it to the following registry locations, creating a new registry key
called "IE"

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce

HKLM:\Software\Microsoft\Windows\CurrentVersion\RunServices

HKCU:\Software\Microsoft\Windows\CurrentVersion

HKEY_USERS\.Default\Software\Microsoft\Windows\CurrentVersion\Run

HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

HKLM:\System\CurrentControlSet\Services\VxD

HKCR:\vbsfile\shell\open\command

The malware also creates a new scheduled task called "IE" that is responsible for executing
$stagerCode each time the system boots, using a random startup delay period.

The malware then queries the system to determine the characteristics of the environment in which it
is operating to determine how to proceed. It specifically checks the version of Powershell that is
installed on the system. If the system is running a Powershell version later than Powershell 2.0, the
malware will write the contents of $ServiceCode to an Alternate Data Stream (ADS) of the the
following file location:

%PROGRAMDATA%\Windows:kernel32.dll

The malware then checks to determine the privilege level of the user that was infected. If the user
has administrative privileges on the infected system, it will set up a WMI event consumer and filter
as an additional WMI-based persistence mechanism. The filter name is "kernel32_filter" and the
consumer name is "kernel32_consumer". The Powershell code used for the performance of these
tasks is below:

Once all of these tasks have completed, the malware then enters the next stage of the infection
process by executing $stagerCode directly using the IEX Powershell cmdlet.

This next stage of the malware infection was heavily obfuscated with both variables and function
names obscured. Most of the strings within this code were also base64 encoded. The code
associated with this stage starts by defining an array containing a list of domains that will be used
for subsequent Command and Control (C2) communications. A list of the domains in this array is
included in the Indicators of Compromise section of this blog.

The malware also obtains the serial number of the system from the BIOS. It calculates the MD5
hash of the serial number and returns the first ten bytes.

Example S/N: VMware-56 4d 64 66 d0 7d f4 26-2c ad a5 8b f8 51 26 f8

Resulting Value: EFA29DD310
The malware then sets a counter value to zero. The aforementioned hash value, the hardcoded
string "stage", the value of the counter, and a randomly selected domain from the array are then
combined to create the initial hostname that will be used by the malware to start making DNS
requests.

Example Hostname: EFA29DD310.stage.0.ns0.pw
At this point the malware enters a loop which will continue until it receives an A record lookup
result of 0.0.0.0 or any lookup fails entirely. The A record result represents a checksum value,

which will be explained below. The IPv4 value returned by the DNS server in response to the A
record request is then converted to an integer, then a binary number.

Example IP: 107.50.99.116

Integer Value: 1798464372

Binary: 1101011001100100110001101110100
The same generated hostname is then used by the malware to make a TXT record request. The
result of the TXT record query is then used to calculate an MD5 hash and the first eight bytes of
the MD5 hash are then run through a checksum algorithm that returns an integer value which is
converted into a binary number.

Example TXT Query Result:

H4sIAIia3VkC/909a1fbSJafyTn5DxXhbkvYEpg8pgcjpnnkwXQgLNCTnnG8HdkqQGBLjiRDCPE5+
x/2H+4v2XvrpdLLmE7m9J6lZ8BWVd133br3VpWyTE4vgoQkdJgGUUiSi2g68smAkmg8DlLqEy8hQU
qgyySmCQ3hY0hOUu+cxo8fLRP3e/48ftTwo7EXhAlxyc+mESZrzuTGaLMPCVAjP068ofx8QweqpeM
gjYn4rLesay1PM1BPNV

MD5: 432B4077F72EE96CA70B57F10B68F35E

Selected Bytes: 432B4077

Checksum: 1126908023

Binary: 1000011001010110100000001110111
Once the malware has both the binary values from the A record response and the above
checksum calculation, they are compared. If the A record response and the TXT record
response match, the result of the TXT record query response is appended to the end of a final
resulting string, a new domain is then randomly selected from the array and the counter value
previously mentioned, and included in the hostname used for queries, is incremented by one. If
they don't match, the queries continue in kind until they do.

This process continues until the result of the A record lookup is 0.0.0.0, which indicates a
completion of the code collection via DNS, at which time the resulting string is returned for further
processing. This result string is then decoded using Base64 and decompressed using gzip. It is then
passed to the Powershell IEX cmdlet to execute the code that was retrieved using DNS.

During analysis of this specific attack, we were unable to obtain this next stage of Powershell code
from the C2 servers. Given the targeted nature of this attack it is likely that the attacker is restricting

these communications in an attempt to evade analysis by information security companies and
researchers. It's been reported that the stage 4 payload is documented here.

Conclusion

This attack shows the level of sophistication that is associated with threats facing organizations
today. Attackers often employ multiple layers of obfuscation in an attempt to make analysis more
difficult, evade detection and prevention capabilities, and continue to operate under the radar by
limiting their attacks to only the organizations that they are targeting. It is also important for
organizations to be aware of some of the more interesting techniques that malware is using to
execute malicious code on systems and gain persistence on systems once they are infected. In this
particular case, the malware featured the capability to leverage WMI, ADS, scheduled tasks, as well
as registry keys to obtain persistence. The use of DNS as a conveyance for later stage code and C2
communications is also becoming more and more commonplace. Talos continues to monitor the
threat landscape for unique and targeted attacks such as this one so that customers remain
protected as attackers change the techniques they use to perform their malicious activities.

Coverage

Additional ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the malware used
by these threat actors.

https://wraithhacker.com/2017/10/11/more-info-on-evolved-dnsmessenger/
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection

CWS or WSA web scanning prevents access to malicious websites and detects malware used in
these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such asNGFW,NGIPS, andMeraki MX can detect malicious activity
associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious domains,
IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the latest
rule pack available for purchase on Snort.org.

Indicators of Compromise (IOCs)

The following Indicators of Compromise (IOCs) are associated with the attack described in this blog
post.

Malicious Word Documents:

1a1294fce91af3f7e7691f8307d07aebd4636402e4e6a244faac5ac9b36f8428
bf38288956449bb120bae525b6632f0294d25593da8938bbe79849d6defed5cb

Stage 2 PowerShell

8c5209671c9d4f0928f1ae253c40ce7515d220186bb4a97cbaf6c25bd3be53cf
ec3aee4e579e0d1db922252f9a15f1208c4f9ac03bd996af4884725a96a3fdf6

Domains:

trt[.]doe[.]louisiana[.]gov
ns0[.]pw
ns0[.]site
ns0[.]space
ns0[.]website

https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products

ns1[.]press
ns1[.]website
ns2[.]press
ns3[.]site
ns3[.]space
ns4[.]site
ns4[.]space
ns5[.]biz
ns5[.]online
ns5[.]pw

IP Addresses:

206[.]218[.]181[.]46

SHARE THIS POST

Software

Reputation Center

Vulnerability Inforamtion

Microsoft Advisory Snort Rules

Incident Response

Secure Endpoint Naming Conventions

Talos File Reputation

Library

Support Communities

About

Careers

Talos Blog

Threat Source newsletters

Beers with Talos Podcast

Talos Takes Podcast

CONNECT WITH US

https://www.facebook.com/sharer.php?u=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://twitter.com/share?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://www.linkedin.com/sharing/share-offsite/?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://www.reddit/submit?url=https://blog.talosintelligence.com/dnsmessenger-sec-campaign/
mailto:?body=Spoofed%20SEC%20Emails%20Distribute%20Evolved%20DNSMessengerhttps://blog.talosintelligence.com/dnsmessenger-sec-campaign/
https://talosintelligence.com/software
https://talosintelligence.com/reputation_center
https://talosintelligence.com/vulnerability_info
https://talosintelligence.com/ms_advisories
https://talosintelligence.com/incident_response
https://talosintelligence.com/amp-naming
https://talosintelligence.com/talos_file_reputation
https://talosintelligence.com/resources
https://talosintelligence.com/community
https://talosintelligence.com/about
https://talosintelligence.com/careers
https://blog.talosintelligence.com/
https://talosintelligence.com/newsletters
https://talosintelligence.com/podcasts/shows/beers_with_talos
https://talosintelligence.com/podcasts/shows/talos_takes
https://twitter.com/talossecurity
https://www.youtube.com/channel/UCPZ1DtzQkStYBSG3GTNoyfg/featured
https://www.linkedin.com/company/cisco-talos-intelligence-group/

© 2023 Cisco Systems, Inc. and/or its affiliates. All rights reserved. View our Privacy Policy

https://tools.cisco.com/security/center/home.x
https://www.cisco.com/web/siteassets/legal/privacy_full.html

